Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Extracell Biol ; 3(8): e70003, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39185333

RESUMEN

Since extracellular vesicles (EVs) have emerged as a promising drug delivery system, diverse methods have been used to load them with active pharmaceutical ingredients (API) in preclinical and clinical studies. However, there is yet to be an engineered EV formulation approved for human use, a barrier driven in part by the intrinsic heterogeneity of EVs. API loading is rarely assessed in the context of single vesicle measurements of physicochemical properties but is likely administered in a heterogeneous fashion to the detriment of a consistent product. Here, we applied a suite of single-particle resolution methods to determine the loading of rhodamine 6G (R6G) surrogate cargo mimicking hydrophilic small molecule drugs across four common API loading methods: sonication, electroporation, freeze-thaw cycling and passive incubation. Loading efficiencies and alterations in the physical properties of EVs were assessed, as well as co-localization with common EV-associated tetraspanins (i.e., CD63, CD81 and CD9) for insight into EV subpopulations. Sonication had the highest loading efficiency, yet significantly decreased particle yield, while electroporation led to the greatest number of loaded API particles, albeit at a lower efficiency. Moreover, results were often inconsistent between repeated runs within a given method, demonstrating the difficulty in developing a rigorous loading method that consistently loaded EVs across their heterogeneous subpopulations. This work highlights the significance of how chosen quantification metrics can impact apparent conclusions and the importance of single-particle characterization of EV loading.

2.
bioRxiv ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38798662

RESUMEN

Sepsis following burn trauma is a global complication with high mortality, with ~60% of burn patient deaths resulting from infectious complications. Sepsis diagnosis is complicated by confounding clinical manifestations of the burn injury, and current biomarkers markers lack the sensitivity and specificity required for prompt treatment. Circulating extracellular vesicles (EVs) from patient liquid biopsy as biomarkers of sepsis due to their release by pathogens from bacterial biofilms and roles in subsequent immune response. This study applies Raman spectroscopy to patient plasma derived EVs for rapid, sensitive, and specific detection of sepsis in burn patients, achieving 97.5% sensitivity and 90.0% specificity. Furthermore, spectral differences between septic and non-septic burn patient EVs could be traced to specific glycoconjugates of bacterial strains associated with sepsis morbidity. This work illustrates the potential application of EVs as biomarkers in clinical burn trauma care, and establishes Raman analysis as a fast, label-free method to specifically identify features of bacterial EVs relevant to infection amongst the host background.

3.
Adv Biol (Weinh) ; 8(6): e2300577, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38596830

RESUMEN

Metastasis is the principal factor in poor prognosis for individuals with osteosarcoma (OS). Understanding the events that lead to metastasis is critical to develop better interventions for this disease. Alveolar macrophages are potentially involved in priming the lung microenvironment for OS metastasis, yet the mechanisms involved in this process remain unclear. Since extracellular vesicles (EVs) are a known actor in primary tumor development, their potential role in OS metastagenesis through macrophage modulation is explored here. The interaction of EVs isolated from highly metastatic (K7M2) and less metastatic (K12) osteosarcoma cell lines is compared with a peritoneal macrophage cell line. An EV concentration that reproducibly induced macrophage migration is identified first, then used for later experiments. By confocal microscopy, both EV types associated with M0 or M1 macrophages; however, only K7M2-EVs are associated with M2 macrophages, an interaction that is abrogated by EV pre-treatment with anti-CD47 antibody. Interestingly, all interactions appeared to be surface binding, not internalized. In functional studies, K7M2-EVs polarized fewer macrophages to M1. Together, these data suggest that K7M2-EVs have unique interactions with macrophages that can contribute to the production of a higher proportion of pro-tumor type macrophages, thereby accelerating metastasis.


Asunto(s)
Neoplasias Óseas , Vesículas Extracelulares , Macrófagos , Osteosarcoma , Osteosarcoma/patología , Osteosarcoma/metabolismo , Osteosarcoma/secundario , Vesículas Extracelulares/metabolismo , Humanos , Línea Celular Tumoral , Macrófagos/inmunología , Macrófagos/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Fenotipo , Animales , Microambiente Tumoral , Metástasis de la Neoplasia , Ratones , Movimiento Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...