Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 40(43): 12826-32, 2001 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-11669619

RESUMEN

To better understand potential roles of conserved Trp457 of the murine inducible nitric oxide synthase oxygenase domain (iNOS(ox); residues 1-498) in maintaining the structural integrity of the (6R)-5,6,7,8-tetrahydrobiopterin (H(4)B) binding site located at the dimer interface and in supporting H(4)B redox activity, we determined crystallographic structures of W457F and W457A mutant iNOS(ox) dimers (residues 66-498). In W457F iNOS(ox), all the important hydrogen-bonding and aromatic stacking interactions that constitute the H(4)B binding site and that bridge the H(4)B and heme sites are preserved. In contrast, the W457A mutation results in rearrangement of the Arg193 side chain, orienting its terminal guanidinium group almost perpendicular to the ring plane of H(4)B. Although Trp457 is not required for dimerization, both Trp457 mutations led to the increased mobility of the N-terminal H(4)B binding segment (Ser112-Met114), which might indicate reduced stability of the Trp457 mutant dimers. The Trp457 mutant structures show decreased pi-stacking with bound pterin when the wild-type pi-stacking Trp457 position is occupied with the smaller Phe457 in W457F or positive Arg193 in W457A. The reduced pterin pi-stacking in these mutant structures, relative to that in the wild-type, implies stabilization of reduced H(4)B and destabilization of the pterin radical, consequently slowing electron transfer to the heme ferrous-dioxy (Fe(II)O(2)) species during catalysis. These crystal structures therefore aid elucidation of the roles and importance of conserved Trp457 in maintaining the structural integrity of the H(4)B binding site and of H(4)B-bound dimers, and in influencing the rate of electron transfer between H(4)B and heme in NOS catalysis.


Asunto(s)
Biopterinas/análogos & derivados , Biopterinas/química , Biopterinas/genética , Óxido Nítrico Sintasa/química , Óxido Nítrico Sintasa/fisiología , Triptófano/química , Animales , Sitios de Unión , Catálisis , Secuencia Conservada , Cristalografía por Rayos X , Dimerización , Transporte de Electrón , Escherichia coli/metabolismo , Hemo/química , Enlace de Hidrógeno , Ratones , Modelos Químicos , Modelos Moleculares , Mutación , Óxido Nítrico Sintasa de Tipo II , Unión Proteica , Proteínas Recombinantes/química
2.
J Mol Biol ; 305(1): 95-107, 2001 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-11114250

RESUMEN

Clostridium botulinum C3 exoenzyme inactivates the small GTP-binding protein family Rho by ADP-ribosylating asparagine 41, which depolymerizes the actin cytoskeleton. C3 thus represents a major family of the bacterial toxins that transfer the ADP-ribose moiety of NAD to specific amino acids in acceptor proteins to modify key biological activities in eukaryotic cells, including protein synthesis, differentiation, transformation, and intracellular signaling. The 1.7 A resolution C3 exoenzyme structure establishes the conserved features of the core NAD-binding beta-sandwich fold with other ADP-ribosylating toxins despite little sequence conservation. Importantly, the central core of the C3 exoenzyme structure is distinguished by the absence of an active site loop observed in many other ADP-ribosylating toxins. Unlike the ADP-ribosylating toxins that possess the active site loop near the central core, the C3 exoenzyme replaces the active site loop with an alpha-helix, alpha3. Moreover, structural and sequence similarities with the catalytic domain of vegetative insecticidal protein 2 (VIP2), an actin ADP-ribosyltransferase, unexpectedly implicates two adjacent, protruding turns, which join beta5 and beta6 of the toxin core fold, as a novel recognition specificity motif for this newly defined toxin family. Turn 1 evidently positions the solvent-exposed, aromatic side-chain of Phe209 to interact with the hydrophobic region of Rho adjacent to its GTP-binding site. Turn 2 evidently both places the Gln212 side-chain for hydrogen bonding to recognize Rho Asn41 for nucleophilic attack on the anomeric carbon of NAD ribose and holds the key Glu214 catalytic side-chain in the adjacent catalytic pocket. This proposed bipartite ADP-ribosylating toxin turn-turn (ARTT) motif places the VIP2 and C3 toxin classes into a single ARTT family characterized by analogous target protein recognition via turn 1 aromatic and turn 2 hydrogen-bonding side-chain moieties. Turn 2 centrally anchors the catalytic Glu214 within the ARTT motif, and furthermore distinguishes the C3 toxin class by a conserved turn 2 Gln and the VIP2 binary toxin class by a conserved turn 2 Glu for appropriate target side-chain hydrogen-bonding recognition. Taken together, these structural results provide a molecular basis for understanding the coupled activity and recognition specificity for C3 and for the newly defined ARTT toxin family, which acts in the depolymerization of the actin cytoskeleton. This beta5 to beta6 region of the toxin fold represents an experimentally testable and potentially general recognition motif region for other ADP-ribosylating toxins that have a similar beta-structure framework.


Asunto(s)
ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , Toxinas Botulínicas , Clostridium botulinum/enzimología , Proteínas de Unión al GTP rho/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arginina/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Sitios de Unión , Catálisis , Cristalización , Cristalografía por Rayos X , Evolución Molecular , Modelos Moleculares , Datos de Secuencia Molecular , NAD/metabolismo , Estructura Secundaria de Proteína , Alineación de Secuencia , Relación Estructura-Actividad , Especificidad por Sustrato
3.
Structure ; 8(8): 841-50, 2000 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-10997903

RESUMEN

BACKGROUND: The Saccharomyces cerevisiae protein Cks1 (cyclin-dependent kinase subunit 1) is essential for cell-cycle progression. The biological function of Cks1 can be modulated by a switch between two distinct molecular assemblies: the single domain fold, which results from the closing of a beta-hinge motif, and the intersubunit beta-strand interchanged dimer, which arises from the opening of the beta-hinge motif. The crystal structure of a cyclin-dependent kinase (Cdk) in complex with the human Cks homolog CksHs1 single-domain fold revealed the importance of conserved hydrophobic residues and charged residues within the beta-hinge motif. RESULTS: The 3.0 A resolution Cks1 structure reveals the strict structural conservation of the Cks alpha/beta-core fold and the beta-hinge motif. The beta hinge identified in the Cks1 structure includes a novel pivot and exposes a cluster of conserved tyrosine residues that are involved in Cdk binding but are sequestered in the beta-interchanged Cks homolog suc1 dimer structure. This Cks1 structure confirms the conservation of the Cks anion-binding site, which interacts with sidechain residues from the C-terminal alpha helix of another subunit in the crystal. CONCLUSIONS: The Cks1 structure exemplifies the conservation of the beta-interchanged dimer and the anion-binding site in evolutionarily distant yeast and human Cks homologs. Mutational analyses including in vivo rescue of CKS1 disruption support the dual functional roles of the beta-hinge residue Glu94, which participates in Cdk binding, and of the anion-binding pocket that is located 22 A away and on an opposite face to Glu94. The Cks1 structure suggests a biological role for the beta-interchanged dimer and the anion-binding site in targeting Cdks to specific phosphoproteins during cell-cycle progression.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Fúngicas/química , Conformación Proteica , Proteínas de Saccharomyces cerevisiae , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Aniones/metabolismo , Ciclo Celular , Análisis Mutacional de ADN , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Datos de Secuencia Molecular , Unión Proteica , Saccharomyces cerevisiae
4.
Biochemistry ; 39(16): 4608-21, 2000 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-10769116

RESUMEN

Nitric oxide synthases (NOSs) catalyze two mechanistically distinct, tetrahydrobiopterin (H(4)B)-dependent, heme-based oxidations that first convert L-arginine (L-Arg) to N(omega)-hydroxy-L-arginine (NHA) and then NHA to L-citrulline and nitric oxide. Structures of the murine inducible NOS oxygenase domain (iNOS(ox)) complexed with NHA indicate that NHA and L-Arg both bind with the same conformation adjacent to the heme iron and neither interacts directly with it nor with H(4)B. Steric restriction of dioxygen binding to the heme in the NHA complex suggests either small conformational adjustments in the ternary complex or a concerted reaction of dioxygen with NHA and the heme iron. Interactions of the NHA hydroxyl with active center beta-structure and the heme ring polarize and distort the hydroxyguanidinium to increase substrate reactivity. Steric constraints in the active center rule against superoxo-iron accepting a hydrogen atom from the NHA hydroxyl in their initial reaction, but support an Fe(III)-peroxo-NHA radical conjugate as an intermediate. However, our structures do not exclude an oxo-iron intermediate participating in either L-Arg or NHA oxidation. Identical binding modes for active H(4)B, the inactive quinonoid-dihydrobiopterin (q-H(2)B), and inactive 4-amino-H(4)B indicate that conformational differences cannot explain pterin inactivity. Different redox and/or protonation states of q-H(2)B and 4-amino-H(4)B relative to H(4)B likely affect their ability to electronically influence the heme and/or undergo redox reactions during NOS catalysis. On the basis of these structures, we propose a testable mechanism where neutral H(4)B transfers both an electron and a 3,4-amide proton to the heme during the first step of NO synthesis.


Asunto(s)
Arginina/análogos & derivados , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Óxido Nítrico Sintasa/química , Óxido Nítrico Sintasa/metabolismo , Oxigenasas/metabolismo , Animales , Arginina/química , Arginina/metabolismo , Sitios de Unión , Biopterinas/química , Catálisis , Cristalografía por Rayos X , Dimerización , Hemo/metabolismo , Enlace de Hidrógeno , Hierro/metabolismo , Ratones , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Óxido Nítrico Sintasa de Tipo II , Oxidación-Reducción , Oxígeno/metabolismo , Oxigenasas/química , Conformación Proteica , Relación Estructura-Actividad
5.
EMBO J ; 19(7): 1719-30, 2000 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-10747039

RESUMEN

Human O(6)-alkylguanine-DNA alkyltransferase (AGT), which directly reverses endogenous alkylation at the O(6)-position of guanine, confers resistance to alkylation chemotherapies and is therefore an active anticancer drug target. Crystal structures of active human AGT and its biologically and therapeutically relevant methylated and benzylated product complexes reveal an unexpected zinc-stabilized helical bridge joining a two-domain alpha/beta structure. An asparagine hinge couples the active site motif to a helix-turn-helix (HTH) motif implicated in DNA binding. The reactive cysteine environment, its position within a groove adjacent to the alkyl-binding cavity and mutational analyses characterize DNA-damage recognition and inhibitor specificity, support a structure-based dealkylation mechanism and suggest a molecular basis for destabilization of the alkylated protein. These results support damaged nucleotide flipping facilitated by an arginine finger within the HTH motif to stabilize the extrahelical O(6)-alkylguanine without the protein conformational change originally proposed from the empty Ada structure. Cysteine alkylation sterically shifts the HTH recognition helix to evidently mechanistically couple release of repaired DNA to an opening of the protein fold to promote the biological turnover of the alkylated protein.


Asunto(s)
O(6)-Metilguanina-ADN Metiltransferasa/química , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Alquilación , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Dominio Catalítico/genética , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Secuencias Hélice-Asa-Hélice , Humanos , Técnicas In Vitro , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , O(6)-Metilguanina-ADN Metiltransferasa/genética , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Zinc/química
6.
J Mol Biol ; 296(1): 295-309, 2000 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-10656833

RESUMEN

Human catalase is an heme-containing peroxisomal enzyme that breaks down hydrogen peroxide to water and oxygen; it is implicated in ethanol metabolism, inflammation, apoptosis, aging and cancer. The 1. 5 A resolution human enzyme structure, both with and without bound NADPH, establishes the conserved features of mammalian catalase fold and assembly, implicates Tyr370 as the tyrosine radical, suggests the structural basis for redox-sensitive binding of cognate mRNA via the catalase NADPH binding site, and identifies an unexpectedly substantial number of water-mediated domain contacts. A molecular ruler mechanism based on observed water positions in the 25 A-long channel resolves problems for selecting hydrogen peroxide. Control of water-mediated hydrogen bonds by this ruler selects for the longer hydrogen peroxide and explains the paradoxical effects of mutations that increase active site access but lower catalytic rate. The heme active site is tuned without compromising peroxide binding through a Tyr-Arg-His-Asp charge relay, arginine residue to heme carboxylate group hydrogen bonding, and aromatic stacking. Structures of the non-specific cyanide and specific 3-amino-1,2, 4-triazole inhibitor complexes of human catalase identify their modes of inhibition and help reveal the catalytic mechanism of catalase. Taken together, these resting state and inhibited human catalase structures support specific, structure-based mechanisms for the catalase substrate recognition, reaction and inhibition and provide a molecular basis for understanding ethanol intoxication and the likely effects of human polymorphisms.


Asunto(s)
Catalasa/química , Catalasa/metabolismo , Inhibidores Enzimáticos/metabolismo , NADP/metabolismo , Secuencia de Aminoácidos , Amitrol (Herbicida)/química , Amitrol (Herbicida)/metabolismo , Sitios de Unión , Catalasa/antagonistas & inhibidores , Catálisis , Cristalización , Cristalografía por Rayos X , Cianuros/química , Cianuros/metabolismo , Electrones , Inhibidores Enzimáticos/química , Hemo/metabolismo , Humanos , Enlace de Hidrógeno , Peróxido de Hidrógeno/metabolismo , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , NADP/química , Conformación Proteica , Especificidad por Sustrato , Tirosina/análogos & derivados , Tirosina/química , Tirosina/metabolismo , Agua/metabolismo
7.
EMBO J ; 18(22): 6271-81, 1999 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-10562539

RESUMEN

Nitric oxide synthase oxygenase domains (NOS(ox)) must bind tetrahydrobiopterin and dimerize to be active. New crystallographic structures of inducible NOS(ox) reveal that conformational changes in a switch region (residues 103-111) preceding a pterin-binding segment exchange N-terminal beta-hairpin hooks between subunits of the dimer. N-terminal hooks interact primarily with their own subunits in the 'unswapped' structure, and two switch region cysteines (104 and 109) from each subunit ligate a single zinc ion at the dimer interface. N-terminal hooks rearrange from intra- to intersubunit interactions in the 'swapped structure', and Cys109 forms a self-symmetric disulfide bond across the dimer interface. Subunit association and activity are adversely affected by mutations in the N-terminal hook that disrupt interactions across the dimer interface only in the swapped structure. Residue conservation and electrostatic potential at the NOS(ox) molecular surface suggest likely interfaces outside the switch region for electron transfer from the NOS reductase domain. The correlation between three-dimensional domain swapping of the N-terminal hook and metal ion release with disulfide formation may impact inducible nitric oxide synthase (i)NOS stability and regulation in vivo.


Asunto(s)
Óxido Nítrico Sintasa/química , Óxido Nítrico Sintasa/metabolismo , Zinc/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Cisteína , Dimerización , Enlace de Hidrógeno , Sustancias Macromoleculares , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Óxido Nítrico Sintasa de Tipo II , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Programas Informáticos , Electricidad Estática
8.
J Mol Biol ; 291(2): 329-45, 1999 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-10438624

RESUMEN

Among catalytic antibodies, the well-characterized antibody 43C9 is unique in its ability to catalyze the difficult, but desirable, reaction of selective amide hydrolysis. The crystallographic structures that we present here for the single-chain variable fragment of the 43C9 antibody, both with and without the bound product p -nitrophenol, strongly support and extend the structural and mechanistic information previously provided by a three-dimensional computational model, together with extensive biochemical, kinetics, and mutagenesis results. The structures reveal an unexpected extended beta-sheet conformation of the third complementarity determining region of the heavy chain, which may be coupled to the novel indole ring orientation of the adjacent Trp H103. This unusual conformation creates an antigen-binding site that is significantly deeper than predicted in the computational model, with a hydrophobic pocket that encloses the p -nitrophenol product. Despite these differences, the previously proposed roles for Arg L96 in transition-state stabilization and for His L91 as the nucleophile that forms a covalent acyl-antibody intermediate are fully supported by the crystallographic structures. His L91 is now centered at the bottom of the antigen-binding site with the imidazole ring poised for nucleophilic attack. His L91, Arg L96, and the bound p -nitrophenol are linked into a hydrogen-bonding network by two well-ordered water molecules. These water molecules may mimic the positions of the phosphonamidate oxygen atoms of the antigen, which in turn mimic the transition state of the reaction. This network also contains His H35, suggesting that this residue may also stabilize the transition-states. A possible proton-transfer pathway from His L91 through two tyrosine residues may assist nucleophilic attack. Although transition-state stabilization is commonly observed in esterolytic antibodies, nucleophilic attack appears to be unique to 43C9 and accounts for the unusually high catalytic activity of this antibody.


Asunto(s)
Amidas/metabolismo , Anticuerpos Catalíticos/química , Regiones Determinantes de Complementariedad , Secuencia de Aminoácidos , Anticuerpos Catalíticos/metabolismo , Sitios de Unión de Anticuerpos , Catálisis , Línea Celular Transformada , Simulación por Computador , Cristalografía por Rayos X , Hidrólisis , Fragmentos de Inmunoglobulinas/química , Fragmentos de Inmunoglobulinas/metabolismo , Región Variable de Inmunoglobulina/química , Región Variable de Inmunoglobulina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Nitrofenoles/química , Nitrofenoles/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , Triptófano
9.
J Mol Biol ; 287(2): 331-46, 1999 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-10080896

RESUMEN

Uracil-DNA glycosylase (UDG), which is a critical enzyme in DNA base-excision repair that recognizes and removes uracil from DNA, is specifically and irreversably inhibited by the thermostable uracil-DNA glycosylase inhibitor protein (Ugi). A paradox for the highly specific Ugi inhibition of UDG is how Ugi can successfully mimic DNA backbone interactions for UDG without resulting in significant cross-reactivity with numerous other enzymes that possess DNA backbone binding affinity. High-resolution X-ray crystal structures of Ugi both free and in complex with wild-type and the functionally defective His187Asp mutant Escherichia coli UDGs reveal the detailed molecular basis for duplex DNA backbone mimicry by Ugi. The overall shape and charge distribution of Ugi most closely resembles a midpoint in a trajectory between B-form DNA and the kinked DNA observed in UDG:DNA product complexes. Thus, Ugi targets the mechanism of uracil flipping by UDG and appears to be a transition-state mimic for UDG-flipping of uracil nucleotides from DNA. Essentially all the exquisite shape, electrostatic and hydrophobic complementarity for the high-affinity UDG-Ugi interaction is pre-existing, except for a key flip of the Ugi Gln19 carbonyl group and Glu20 side-chain, which is triggered by the formation of the complex. Conformational changes between unbound Ugi and Ugi complexed with UDG involve the beta-zipper structural motif, which we have named for the reversible pairing observed between intramolecular beta-strands. A similar beta-zipper is observed in the conversion between the open and closed forms of UDG. The combination of extremely high levels of pre-existing structural complementarity to DNA binding features specific to UDG with key local conformational changes in Ugi resolves the UDG-Ugi paradox and suggests a potentially general structural solution to the formation of very high affinity DNA enzyme-inhibitor complexes that avoid cross- reactivity.


Asunto(s)
ADN Glicosilasas , Escherichia coli/enzimología , N-Glicosil Hidrolasas/química , Proteínas Virales/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Inhibidores Enzimáticos/química , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , N-Glicosil Hidrolasas/genética , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Alineación de Secuencia , Uracil-ADN Glicosidasa
10.
Nat Struct Biol ; 5(12): 1058-64, 1998 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9846876

RESUMEN

The DNA glycosylase MutY, which is a member of the Helix-hairpin-Helix (HhH) DNA glycosylase superfamily, excises adenine from mispairs with 8-oxoguanine and guanine. High-resolution crystal structures of the MutY catalytic core (cMutY), the complex with bound adenine, and designed mutants reveal the basis for adenine specificity and glycosyl bond cleavage chemistry. The two cMutY helical domains form a positively-charged groove with the adenine-specific pocket at their interface. The Watson-Crick hydrogen bond partners of the bound adenine are substituted by protein atoms, confirming a nucleotide flipping mechanism, and supporting a specific DNA binding orientation by MutY and structurally related DNA glycosylases.


Asunto(s)
Adenina/metabolismo , Reparación del ADN , N-Glicosil Hidrolasas/metabolismo , Secuencia de Aminoácidos , Disparidad de Par Base , Dominio Catalítico/genética , Cristalografía por Rayos X , ADN/metabolismo , ADN Glicosilasas , Guanina/análogos & derivados , Guanina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/genética , Conformación Proteica , Especificidad por Sustrato
11.
Science ; 279(5359): 2121-6, 1998 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-9516116

RESUMEN

Crystal structures of the murine cytokine-inducible nitric oxide synthase oxygenase dimer with active-center water molecules, the substrate L-arginine (L-Arg), or product analog thiocitrulline reveal how dimerization, cofactor tetrahydrobiopterin, and L-Arg binding complete the catalytic center for synthesis of the essential biological signal and cytotoxin nitric oxide. Pterin binding refolds the central interface region, recruits new structural elements, creates a 30 angstrom deep active-center channel, and causes a 35 degrees helical tilt to expose a heme edge and the adjacent residue tryptophan-366 for likely reductase domain interactions and caveolin inhibition. Heme propionate interactions with pterin and L-Arg suggest that pterin has electronic influences on heme-bound oxygen. L-Arginine binds to glutamic acid-371 and stacks with heme in an otherwise hydrophobic pocket to aid activation of heme-bound oxygen by direct proton donation and thereby differentiate the two chemical steps of nitric oxide synthesis.


Asunto(s)
Arginina/metabolismo , Biopterinas/análogos & derivados , Óxido Nítrico Sintasa/química , Conformación Proteica , Animales , Arginina/química , Sitios de Unión , Biopterinas/química , Biopterinas/metabolismo , Citrulina/análogos & derivados , Citrulina/química , Citrulina/metabolismo , Cristalografía por Rayos X , Dimerización , Enlace de Hidrógeno , Isoenzimas/química , Isoenzimas/metabolismo , Ligandos , Macrófagos/enzimología , Ratones , Modelos Moleculares , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo II , Pliegue de Proteína , Estructura Secundaria de Proteína , Tiourea/análogos & derivados , Tiourea/química , Tiourea/metabolismo
12.
Nat Struct Biol ; 4(11): 919-24, 1997 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9360608

RESUMEN

The first crystal structure of the iron-transporter ferric ion-binding protein from Haemophilus influenzae (hFBP), at 1.6 A resolution, reveals the structural basis for iron uptake and transport required by several important bacterial pathogens. Paradoxically, although hFBP belongs to a protein superfamily which includes human transferrin, iron binding in hFBP and transferrin appears to have developed independently by convergent evolution. Structural comparison of hFBP with other prokaryotic periplasmic transport proteins and the eukaryotic transferrins suggests that these proteins are related by divergent evolution from an anion-binding common ancestor, not from an iron-binding ancestor. The iron binding site of hFBP incorporates a water and an exogenous phosphate ion as iron ligands and exhibits nearly ideal octahedral metal coordination. FBP is highly conserved, required for virulence, and is a nodal point for free iron uptake in several Gram-negative pathogenic bacteria, thus providing a potential target for broad-spectrum antibacterial drug design against human pathogens such as H. influenzae, Neisseria gonorrhoeae, and Neisseria meningitidis.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Evolución Molecular , Haemophilus influenzae/química , Hierro/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Unión a Hierro , Modelos Moleculares , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Proteínas de Unión a Transferrina
13.
Science ; 278(5337): 425-31, 1997 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-9334294

RESUMEN

The nitric oxide synthase oxygenase domain (NOSox) oxidizes arginine to synthesize the cellular signal and defensive cytotoxin nitric oxide (NO). Crystal structures determined for cytokine-inducible NOSox reveal an unusual fold and heme environment for stabilization of activated oxygen intermediates key for catalysis. A winged beta sheet engenders a curved alpha-beta domain resembling a baseball catcher's mitt with heme clasped in the palm. The location of exposed hydrophobic residues and the results of mutational analysis place the dimer interface adjacent to the heme-binding pocket. Juxtaposed hydrophobic O2- and polar L-arginine-binding sites occupied by imidazole and aminoguanidine, respectively, provide a template for designing dual-function inhibitors and imply substrate-assisted catalysis.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas de Homeodominio/genética , Isoenzimas/química , Óxido Nítrico Sintasa/química , Conformación Proteica , Secuencia de Aminoácidos , Arginina/química , Arginina/metabolismo , Sitios de Unión , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Catálisis , Cristalografía por Rayos X , Dimerización , Inducción Enzimática , Inhibidores Enzimáticos/metabolismo , Guanidinas/metabolismo , Hemo/química , Proteínas de Homeodominio/química , Proteínas de Homeodominio/fisiología , Enlace de Hidrógeno , Imidazoles/metabolismo , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Oxigenasas/química , Oxigenasas/metabolismo , Pliegue de Proteína , Estructura Secundaria de Proteína
14.
Nature ; 384(6604): 87-92, 1996 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-8900285

RESUMEN

Any uracil bases in DNA, a result of either misincorporation or deamination of cytosine, are removed by uracil-DNA glycosylase (UDG), one of the most efficient and specific of the base-excision DNA-repair enzymes. Crystal structures of human and viral UDGs complexed with free uracil have indicated that the enzyme binds an extrahelical uracil. Such binding of undamaged extrahelical bases has been seen in the structures of two bacterial methyltransferases and bacteriophage T4 endonuclease V. Here we characterize the DNA binding and kinetics of several engineered human UDG mutants and present the crystal structure of one of these, which to our knowledge represents the first structure of any eukaryotic DNA repair enzyme in complex with its damaged, target DNA. Electrostatic orientation along the UDG active site, insertion of an amino acid (residue 272) into the DNA through the minor groove, and compression of the DNA backbone flanking the uracil all result in the flipping-out of the damaged base from the DNA major groove, allowing specific recognition of its phosphate, deoxyribose and uracil moieties. Our structure thus provides a view of a productive complex specific for cleavage of uracil from DNA and also reveals the basis for the enzyme-assisted nucleotide flipping by this critical DNA-repair enzyme.


Asunto(s)
ADN Glicosilasas , Reparación del ADN , ADN/metabolismo , N-Glicosil Hidrolasas/metabolismo , Conformación de Ácido Nucleico , Conformación Proteica , Uracilo/metabolismo , Cristalografía por Rayos X , ADN/química , ADN/genética , Electroquímica , Humanos , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/genética , Unión Proteica , Relación Estructura-Actividad , Uracilo/química , Uracil-ADN Glicosidasa
15.
J Mol Biol ; 261(5): 646-57, 1996 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-8800213

RESUMEN

A mutation directing an amino acid substitution in the conserved beta-hinge region of one of the human Cks isoforms, CksHs2, was constructed by site-directed mutagenesis. Replacement of glutamine for glutamate 63 (E63Q) was predicted to stabilize the beta-interchanged dimeric and hexameric assembly of CksHs2. However, such an effect was seen only at high, non-physiological pH. Three-dimensional structures of the E63Q hexameric mutant protein were determined to 2.6 A resolution in a P4(3)2(1)2 space group and 2.1 A in the C2 space group isostructural with wild-type, and both were shown to be virtually identical to the refined 1.7 A wild-type structure. Thus, the E63Q mutation did not alter the wild-type structure and assembly of CksHs2 but, surprisingly, disrupted the essential biological function of the protein and significantly reduced its ability to bind to cyclin-dependent kinases. The Kd of wild-type CksHs2 for CDK2 was 5.05 x 10(-8) M, whereas the affinity of the mutant protein for CDK2 was too low to allow a determination. These data, coupled with the observation that monomeric but not hexameric CksHs2 interacts with cyclin-dependent kinases, suggest that glutamine 63 is likely to be directly involved in cyclin-dependent kinase binding in vitro and in vivo.


Asunto(s)
Quinasas CDC2-CDC28 , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Quinasas Ciclina-Dependientes/metabolismo , Proteínas Quinasas , Secuencia de Bases , Sitios de Unión , Proteína Quinasa CDC2/metabolismo , Proteínas Portadoras/genética , Secuencia Conservada , Quinasa 2 Dependiente de la Ciclina , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
16.
EMBO J ; 15(13): 3442-7, 1996 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-8670846

RESUMEN

Uracil-DNA glycosylase (UDG) protects the genome by removing mutagenic uracil residues resulting from deamination of cytosine. Uracil binds in a rigid pocket at the base of the DNA-binding groove of human UDG and the specificity for uracil over the structurally related DNA bases thymine and cytosine is conferred by shape complementarity, as well as by main chain and Asn204 side chain hydrogen bonds. Here we show that replacement of Asn204 by Asp or Tyr147 by Ala, Cys or Ser results in enzymes that have cytosine-DNA glycosylase (CDG) activity or thymine-DNA glycosylase (TDG) activity, respectively. CDG and the TDG all retain some UDG activity. CDG and TDG have kcat values in the same range as typical multisubstrate-DNA glycosylases, that is at least three orders of magnitude lower than that of the highly selective and efficient wild-type UDG. Expression of CDG or TDG in Escherichia coli causes 4- to 100-fold increases in the yield of rifampicin-resistant mutants. Thus, single amino acid substitutions in UDG result in less selective DNA glycosylases that release normal pyrimidines and confer a mutator phenotype upon the cell. Three of the four new pyrimidine-DNA glycosylases resulted from single nucleotide substitutions, events that may also happen in vivo.


Asunto(s)
Citosina , ADN Glicosilasas , ADN/genética , N-Glicosil Hidrolasas/metabolismo , Timina , Sitios de Unión , Escherichia coli/citología , Humanos , Mutagénesis Sitio-Dirigida , Mutágenos/metabolismo , N-Glicosil Hidrolasas/genética , Uracil-ADN Glicosidasa
17.
Proc Natl Acad Sci U S A ; 92(22): 10232-6, 1995 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-7479758

RESUMEN

The Schizosaccharomyces pombe cell cycle-regulatory protein suc1, named as the suppressor of cdc2 temperature-sensitive mutations, is essential for cell cycle progression. To understand suc1 structure-function relationships and to help resolve conflicting interpretations of suc1 function based on genetic studies of suc1 and its functional homologs in both lower and higher eukaryotes, we have determined the crystal structure of the beta-interchanged suc1 dimer. Each domain consists of three alpha-helices and a four-stranded beta-sheet, completed by the interchange of terminal beta-strands between the two subunits. This beta-interchanged suc1 dimer, when compared with the beta-hairpin single-domain folds of suc1, reveals a beta-hinge motif formed by the conserved amino acid sequence HVPEPH. This beta-hinge mediates the subunit conformation and assembly of suc1: closing produces the intrasubunit beta-hairpin and single-domain fold, whereas opening leads to the intersubunit beta-strand interchange and interlocked dimer assembly reported here. This conformational switch markedly changes the surface accessibility of sequence-conserved residues available for recognition of cyclin-dependent kinase, suggesting a structural mechanism for beta-hinge-mediated regulation of suc1 biological function. Thus, suc1 belongs to the family of domain-swapping proteins, consisting of intertwined and dimeric protein structures in which the dual assembly modes regulate their function.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Fúngicas/química , Conformación Proteica , Estructura Secundaria de Proteína , Proteínas de Schizosaccharomyces pombe , Secuencia de Aminoácidos , Clonación Molecular , Secuencia Conservada , Cristalografía por Rayos X , Escherichia coli , Sustancias Macromoleculares , Modelos Moleculares , Datos de Secuencia Molecular , Pliegue de Proteína , Proteínas Recombinantes/química , Schizosaccharomyces/metabolismo , Homología de Secuencia de Aminoácido
18.
Cell ; 82(5): 701-8, 1995 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-7671300

RESUMEN

Uracil-DNA glycosylase inhibitor (Ugi) is a B. subtilis bacteriophage protein that protects the uracil-containing phage DNA by irreversibly inhibiting the key DNA repair enzyme uracil-DNA glycosylase (UDG). The 1.9 A crystal structure of Ugi complexed to human UDG reveals that the Ugi structure, consisting of a twisted five-stranded antiparallel beta sheet and two alpha helices, binds by inserting a beta strand into the conserved DNA-binding groove of the enzyme without contacting the uracil specificity pocket. The resulting interface, which buries over 1200 A2 on Ugi and involves the entire beta sheet and an alpha helix, is polar and contains 22 water molecules. Ugi binds the sequence-conserved DNA-binding groove of UDG via shape and electrostatic complementarity, specific charged hydrogen bonds, and hydrophobic packing enveloping Leu-272 from a protruding UDG loop. The apparent mimicry by Ugi of DNA interactions with UDG provides both a structural mechanism for UDG binding to DNA, including the enzyme-assisted expulsion of uracil from the DNA helix, and a crystallographic basis for the design of inhibitors with scientific and therapeutic applications.


Asunto(s)
ADN Glicosilasas , Reparación del ADN/fisiología , N-Glicosil Hidrolasas/química , Proteínas Virales/metabolismo , Sitios de Unión/genética , Cristalografía , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , N-Glicosil Hidrolasas/antagonistas & inhibidores , N-Glicosil Hidrolasas/ultraestructura , Unión Proteica/fisiología , Conformación Proteica , Uracilo/metabolismo , Uracil-ADN Glicosidasa , Proteínas Virales/ultraestructura
19.
J Mol Biol ; 249(5): 835-42, 1995 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-7791211

RESUMEN

The structure of the human CksHs1 homolog of the yeast cell-cycle regulatory proteins suc1 and CKS1, which bind to the catalytic subunit of the cyclin-dependent kinases (Cdks) and are essential for yeast cell-cycle progression in vivo, has been determined at 2.9 A resolution. The CksHs1 single polypeptide domain fold, which consists of a four-stranded beta-sheet flanked by two alpha-helices, is dramatically different from the subunit conformation and assembly of the homologous CksHs2, but strikingly similar to the Cdk N-lobe domain fold. The CksHs1 structure identifies sequence-conserved residues Glu61 to His65 as a novel beta-hinge region that folds back to form a beta-hairpin with CksHs1 subunit, whereas this hinge is unfolded to form an extended beta-strand exchange between two CksHs2 subunits. Phosphate and the phosphate analog metavanadate bind CksHs1 in a shallow pocket and interact with five conserved residues (Lys11, Arg20, Ser51, Trp54 and Arg71) suggesting a specific Cks recognition site for a phosphorylated Cdk residue. The dramatic changes to the Cks fold, assembly and exposed conserved surface brought about by switching between the bent and extended hinge conformations are potentially important for the functions of this Cks homolog and could explain conflicting activities inferred from different types of genetic experiments.


Asunto(s)
Proteínas Portadoras/ultraestructura , Proteínas de Ciclo Celular , Proteínas Quinasas/ultraestructura , Secuencia de Aminoácidos , Sitios de Unión , Quinasas CDC2-CDC28 , Proteínas Portadoras/metabolismo , Ciclo Celular , Cristalografía por Rayos X , Quinasas Ciclina-Dependientes , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Fosfatos/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido
20.
Cell ; 80(6): 869-78, 1995 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-7697717

RESUMEN

Crystal structures of the DNA repair enzyme human uracil-DNA glycosylase (UDG), combined with mutational analysis, reveal the structural basis for the specificity of the enzyme. Within the classic alpha/beta fold of UDG, sequence-conserved residues form a positively charged, active-site groove the width of duplex DNA, at the C-terminal edge of the central four-stranded parallel beta sheet. In the UDG-6-aminouracil complex, uracil binds at the base of the groove within a rigid preformed pocket that confers selectivity for uracil over other bases by shape complementary and by main chain and Asn-204 side chain hydrogen bonds. Main chain nitrogen atoms are positioned to stabilize the oxyanion intermediate generated by His-268 acting via nucleophilic attack or general base mechanisms. Specific binding of uracil flipped out from a DNA duplex provides a structural mechanism for damaged base recognition.


Asunto(s)
ADN Glicosilasas , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/metabolismo , Conformación Proteica , Pliegue de Proteína , Secuencia de Aminoácidos , Animales , Asparagina , Sitios de Unión , Catálisis , Clonación Molecular , Cristalografía por Rayos X/métodos , Daño del ADN , Análisis Mutacional de ADN , Reparación del ADN , Escherichia coli , Histidina , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , N-Glicosil Hidrolasas/biosíntesis , Biosíntesis de Proteínas , Estructura Secundaria de Proteína , Conejos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reticulocitos/metabolismo , Especificidad por Sustrato , Uracil-ADN Glicosidasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...