Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 4(8)2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30996139

RESUMEN

Myelomonocytic cells are critically involved in iron turnover as aged RBC recyclers. Human monocytes are divided in 3 subpopulations of classical, intermediate, and nonclassical cells, differing in inflammatory and migratory phenotype. Their functions in iron homeostasis are, however, unclear. Here, we asked whether the functional diversity of monocyte subsets translates into differences in handling physiological and pathological iron species. By microarray data analysis and flow cytometry we identified a set of iron-related genes and proteins upregulated in classical and, in part, intermediate monocytes. These included the iron exporter ferroportin (FPN1), ferritin, transferrin receptor, putative transporters of non-transferrin-bound iron (NTBI), and receptors for damaged erythrocytes. Consequently, classical monocytes displayed superior scavenging capabilities of potentially toxic NTBI, which were augmented by blocking iron export via hepcidin. The same subset and, to a lesser extent, the intermediate population, efficiently cleared damaged erythrocytes in vitro and mediated erythrophagocytosis in vivo in healthy volunteers and patients having received blood transfusions. To summarize, our data underline the physiologically important function of the classical and intermediate subset in clearing NTBI and damaged RBCs. As such, these cells may play a nonnegligible role in iron homeostasis and limit iron toxicity in iron overload conditions.


Asunto(s)
Eritrocitos/patología , Sobrecarga de Hierro/inmunología , Hierro/metabolismo , Monocitos/inmunología , Síndromes Mielodisplásicos/inmunología , Fagocitosis/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Proteínas de Transporte de Catión/metabolismo , Transfusión de Eritrocitos , Eritrocitos/inmunología , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Voluntarios Sanos , Homeostasis/inmunología , Humanos , Hierro/inmunología , Hierro/toxicidad , Sobrecarga de Hierro/sangre , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , Síndromes Mielodisplásicos/sangre , Análisis de Secuencia por Matrices de Oligonucleótidos , Transferrina/metabolismo , Adulto Joven
2.
Front Pharmacol ; 8: 838, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209212

RESUMEN

The iron exporter ferroportin and its ligand, the hormone hepcidin, control fluxes of stored and recycled iron for use in a variety of essential biochemical processes. Inflammatory disorders and malignancies are often associated with high hepcidin levels, leading to ferroportin down-regulation, iron sequestration in tissue macrophages and subsequent anemia. The objective of this research was to develop reagents to characterize the expression of ferroportin, the interaction between ferroportin and hepcidin, as well as to identify novel ferroportin antagonists capable of maintaining iron export in the presence of hepcidin. Development of investigative tools that enabled cell-based screening assays is described in detail, including specific and sensitive monoclonal antibodies that detect endogenously-expressed human and mouse ferroportin and fluorescently-labeled chemically-synthesized human hepcidin. Large and small molecule antagonists inhibiting hepcidin-mediated ferroportin internalization were identified, and unique insights into the requirements for interaction between these two key iron homeostasis molecules are provided.

3.
Nat Med ; 22(8): 945-51, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27428900

RESUMEN

Iron is an essential component of the erythrocyte protein hemoglobin and is crucial to oxygen transport in vertebrates. In the steady state, erythrocyte production is in equilibrium with erythrocyte removal. In various pathophysiological conditions, however, erythrocyte life span is compromised severely, which threatens the organism with anemia and iron toxicity. Here we identify an on-demand mechanism that clears erythrocytes and recycles iron. We show that monocytes that express high levels of lymphocyte antigen 6 complex, locus C1 (LY6C1, also known as Ly-6C) ingest stressed and senescent erythrocytes, accumulate in the liver via coordinated chemotactic cues, and differentiate into ferroportin 1 (FPN1, encoded by SLC40A1)-expressing macrophages that can deliver iron to hepatocytes. Monocyte-derived FPN1(+)Tim-4(neg) macrophages are transient, reside alongside embryonically derived T cell immunoglobulin and mucin domain containing 4 (Timd4, also known as Tim-4)(high) Kupffer cells (KCs), and depend on the growth factor Csf1 and the transcription factor Nrf2 (encoded by Nfe2l2). The spleen, likewise, recruits iron-loaded Ly-6C(high) monocytes, but these do not differentiate into iron-recycling macrophages, owing to the suppressive action of Csf2. The accumulation of a transient macrophage population in the liver also occurs in mouse models of hemolytic anemia, anemia of inflammation, and sickle cell disease. Inhibition of monocyte recruitment to the liver during stressed erythrocyte delivery leads to kidney and liver damage. These observations identify the liver as the primary organ that supports rapid erythrocyte removal and iron recycling, and uncover a mechanism by which the body adapts to fluctuations in erythrocyte integrity.


Asunto(s)
Eritrocitos/metabolismo , Hepatocitos/metabolismo , Hierro/metabolismo , Macrófagos del Hígado/metabolismo , Hígado/metabolismo , Anemia , Anemia Hemolítica , Anemia de Células Falciformes , Animales , Antígenos Ly/metabolismo , Proteínas de Transporte de Catión/metabolismo , Diferenciación Celular , Modelos Animales de Enfermedad , Eritrocitos/citología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Inflamación , Macrófagos del Hígado/citología , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Monocitos/citología , Monocitos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Bazo
4.
J Immunol ; 191(4): 1845-55, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23836059

RESUMEN

Iron is a trace element important for the proper folding and function of various proteins. Physiological regulation of iron stores is of critical importance for RBC production and antimicrobial defense. Hepcidin is a key regulator of iron levels within the body. Under conditions of iron deficiency, hepcidin expression is reduced to promote increased iron uptake from the diet and release from cells, whereas during conditions of iron excess, induction of hepcidin restricts iron uptake and movement within the body. The cytokine IL-6 is well established as an important inducer of hepcidin. The presence of this cytokine during inflammatory states can induce hepcidin production, iron deficiency, and anemia. In this study, we show that IL-22 also influences hepcidin production in vivo. Injection of mice with exogenous mouse IgG1 Fc fused to the N terminus of mouse IL-22 (Fc-IL-22), an IL-22R agonist with prolonged and enhanced functional potency, induced hepcidin production, with a subsequent decrease in circulating serum iron and hemoglobin levels and a concomitant increase in iron accumulation within the spleen. This response was independent of IL-6 and was attenuated in the absence of the IL-22R-associated signaling kinase, Tyk2. Ab-mediated blockade of hepcidin partially reversed the effects on iron biology caused by IL-22R stimulation. Taken together, these data suggest that exogenous IL-22 regulates hepcidin production to physiologically influence iron usage.


Asunto(s)
Hepcidinas/fisiología , Interleucinas/fisiología , Hierro/metabolismo , Secuencia de Aminoácidos , Anemia Ferropénica/sangre , Anemia Ferropénica/inducido químicamente , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Células Cultivadas , Femenino , Hepatocitos/metabolismo , Hepcidinas/antagonistas & inhibidores , Hepcidinas/biosíntesis , Hepcidinas/genética , Hepcidinas/inmunología , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Inmunoglobulina G/genética , Interleucina-6/fisiología , Interleucinas/genética , Interleucinas/farmacología , Interleucinas/toxicidad , Hierro/sangre , Deficiencias de Hierro , Síndrome de Job/metabolismo , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones SCID , Datos de Secuencia Molecular , Fosforilación , Procesamiento Proteico-Postraduccional , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores de IgG/deficiencia , Receptores de Interleucina/agonistas , Receptores de Interleucina/fisiología , Proteínas Recombinantes de Fusión/farmacología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Bazo/metabolismo , Bazo/patología , TYK2 Quinasa/deficiencia , TYK2 Quinasa/metabolismo , Interleucina-22
5.
Cell Metab ; 15(6): 905-17, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22682226

RESUMEN

Ferroportin is the primary means of cellular iron efflux and a key component of iron metabolism. Hepcidin regulates Fpn activity by inducing its internalization and degradation. The mechanism of internalization is reported to require JAK2 activation, phosphorylation of Fpn tyrosine residues 302 and 303, and initiation of transcription through STAT3 phosphorylation. These findings suggest Fpn may be a target for therapeutic intervention through JAK2 modulation. To evaluate the proposed mechanism, Fpn internalization was assessed using several techniques combined with reagents that specifically recognized cell-surface Fpn. In vitro results demonstrated that Hepc-induced Fpn internalization did not require JAK2 or phosphorylation of Fpn residues 302 and 303, nor did it induce JAK-STAT signaling. In vivo, inhibition of JAK2 had no effect on Hepc-induced hypoferremia. However, internalization was delayed by mutation of two Fpn lysine residues that may be targets of ubiquitination.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Janus Quinasa 2/metabolismo , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Transcripción STAT/metabolismo , Tirosina/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Péptidos Catiónicos Antimicrobianos , Proteínas de Transporte de Catión/genética , Células HEK293 , Hepcidinas , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Mutagénesis Sitio-Dirigida , Fosforilación , Transporte de Proteínas , Transducción de Señal , Ubiquitinación
6.
Blood Cells Mol Dis ; 45(3): 238-45, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20800515

RESUMEN

Anemia in cancer patients can result from a complex interaction of numerous factors including iron deficiency, inflammation, toxicity related to therapy and effect of cancer on the marrow. Determining effective anemia treatment can therefore be complex, requiring a combination of diagnostic tests. Research on iron metabolism has highlighted the importance of hepcidin and its potential role in development of anemia of inflammation (AI). Hepcidin is a peptide that controls iron flow, is induced by inflammation and is speculated to cause the sequestration of iron in patients with inflammation. In the present study, serum hepcidin concentration determined by LC-MS/MS was shown to correlate with inflammatory markers in patients with anemia of cancer (AoC). In the absence of a widely-available serum hepcidin detection assay, detection of prohepcidin using a commercial assay has been used for several years as a surrogate for measuring serum hepcidin concentration. Analysis of prohepcidin concentration did not reveal any correlation with hepcidin or with inflammatory markers in patient samples and our data suggest that prohepcidin may not be stable in serum. Algorithms to sub-classify AoC patients showed that hepcidin was strongly associated with the population subset with inflammation and without iron deficiency. Serum hepcidin concentrations may therefore be a good predictor of AI, useful in diagnosis of anemia etiology and in treatment determination.


Asunto(s)
Algoritmos , Anemia/sangre , Péptidos Catiónicos Antimicrobianos/sangre , Inflamación/sangre , Hierro/sangre , Precursores de Proteínas/sangre , Anemia/complicaciones , Anemia/diagnóstico , Biomarcadores/sangre , Femenino , Hepcidinas , Humanos , Inflamación/complicaciones , Inflamación/diagnóstico , Masculino , Neoplasias/sangre , Neoplasias/diagnóstico
7.
Blood ; 115(17): 3616-24, 2010 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-20053755

RESUMEN

Iron maldistribution has been implicated in multiple diseases, including the anemia of inflammation (AI), atherosclerosis, diabetes, and neurodegenerative disorders. Iron metabolism is controlled by hepcidin, a 25-amino acid peptide. Hepcidin is induced by inflammation, causes iron to be sequestered, and thus, potentially contributes to AI. Human hepcidin (hHepc) overexpression in mice caused an iron-deficient phenotype, including stunted growth, hair loss, and iron-deficient erythropoiesis. It also caused resistance to supraphysiologic levels of erythropoiesis-stimulating agent, supporting the hypothesis that hepcidin may influence response to treatment in AI. To explore the role of hepcidin in inflammatory anemia, a mouse AI model was developed with heat-killed Brucella abortus treatment. Suppression of hepcidin mRNA was a successful anemia treatment in this model. High-affinity antibodies specific for hHepc were generated, and hHepc knock-in mice were produced to enable antibody testing. Antibody treatment neutralized hHepc in vitro and in vivo and facilitated anemia treatment in hHepc knock-in mice with AI. These data indicate that antihepcidin antibodies may be an effective treatment for patients with inflammatory anemia. The ability to manipulate iron metabolism in vivo may also allow investigation of the role of iron in a number of other pathologic conditions.


Asunto(s)
Anemia Ferropénica/tratamiento farmacológico , Anticuerpos Neutralizantes/farmacología , Péptidos Catiónicos Antimicrobianos/antagonistas & inhibidores , Hierro/metabolismo , Anemia Ferropénica/genética , Anemia Ferropénica/inmunología , Anemia Ferropénica/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , Péptidos Catiónicos Antimicrobianos/biosíntesis , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/inmunología , Brucella abortus , Modelos Animales de Enfermedad , Eritropoyesis/efectos de los fármacos , Eritropoyesis/genética , Hepcidinas , Humanos , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Ratones , Ratones Transgénicos
8.
J Biol Chem ; 282(51): 36862-70, 2007 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-17956864

RESUMEN

Mutations in the transmembrane glycoproteins transferrin receptor 2 (TfR2) and HFE are associated with hereditary hemochromatosis. Interactions between HFE and transferrin receptor 1 (TfR1) have been mapped to the alpha1- and alpha2-helices in HFE and to the helical domain of TfR1. Recently, TfR2 was also reported to interact with HFE in transfected mammalian cells. To test whether similar HFE residues are important for both TfR1 and TfR2 binding, a mutant form of HFE (W81AHFE) that has an approximately 5,000-fold lower affinity for TfR1 than HFE was employed. As expected, W81AHFE does not interact with TfR1. However, we found that the same mutation in HFE does not affect the TfR2/HFE interaction. This finding indicates that the TfR2/HFE and TfR1/HFE interactions are distinct. We further observed that, unlike TfR1/HFE, Tf does not compete with HFE for binding to TfR2 and that binding is independent of pH (pH 6-7.5). TfR2-TfR1 and HFE-HLA-B7 chimeras were generated to map the domains of the TfR2/HFE interaction. TfR1 and HLA-B7 were chosen because of their similar overall structures with TfR2 and HFE, respectively. We mapped the interacting domains to the putative stalk and protease-like domains of TfR2 located between residues 104 and 250 and to the alpha3 domain of HFE, both of which differ from the TfR1/HFE interacting domains. Furthermore, we found that HFE increases TfR2 levels in hepatic cells independent of holo-Tf.


Asunto(s)
Antígenos CD/metabolismo , Carcinoma Hepatocelular/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Transferrina/metabolismo , Antígenos CD/genética , Carcinoma Hepatocelular/genética , Antígeno HLA-B7/genética , Antígeno HLA-B7/metabolismo , Células HeLa , Hemocromatosis/genética , Hemocromatosis/metabolismo , Proteína de la Hemocromatosis , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Proteínas de la Membrana/genética , Mutación , Mapeo Peptídico , Unión Proteica/genética , Estructura Secundaria de Proteína/genética , Estructura Terciaria de Proteína/genética , Receptores de Transferrina/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...