Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Chem Biol ; 30(6): 618-631.e12, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37290440

RESUMEN

Recurrent JAK2 alterations are observed in myeloproliferative neoplasms, B-cell acute lymphoblastic leukemia, and other hematologic malignancies. Currently available type I JAK2 inhibitors have limited activity in these diseases. Preclinical data support the improved efficacy of type II JAK2 inhibitors, which lock the kinase in the inactive conformation. By screening small molecule libraries, we identified a lead compound with JAK2 selectivity. We highlight analogs with on-target biochemical and cellular activity and demonstrate in vivo activity using a mouse model of polycythemia vera. We present a co-crystal structure that confirms the type II binding mode of our compounds with the "DFG-out" conformation of the JAK2 activation loop. Finally, we identify a JAK2 G993A mutation that confers resistance to the type II JAK2 inhibitor CHZ868 but not to our analogs. These data provide a template for identifying novel type II kinase inhibitors and inform further development of agents targeting JAK2 that overcome resistance.


Asunto(s)
Trastornos Mieloproliferativos , Humanos , Mutación , Trastornos Mieloproliferativos/genética , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo
2.
Immunohorizons ; 7(6): 493-507, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37358498

RESUMEN

In order to study mechanistic/mammalian target of rapamycin's role in T cell differentiation, we generated mice in which Rheb is selectively deleted in T cells (T-Rheb-/- C57BL/6J background). During these studies, we noted that T-Rheb-/- mice were consistently heavier but had improved glucose tolerance and insulin sensitivity as well as a marked increase in beige fat. Microarray analysis of Rheb-/- T cells revealed a marked increase in expression of kallikrein 1-related peptidase b22 (Klk1b22). Overexpression of KLK1b22 in vitro enhanced insulin receptor signaling, and systemic overexpression of KLK1b22 in C57BL/6J mice also enhances glucose tolerance. Although KLK1B22 expression was markedly elevated in the T-Rheb-/- T cells, we never observed any expression in wild-type T cells. Interestingly, in querying the mouse Immunologic Genome Project, we found that Klk1b22 expression was also increased in wild-type 129S1/SVLMJ and C3HEJ mice. Indeed, both strains of mice demonstrate exceptionally improved glucose tolerance. This prompted us to employ CRISPR-mediated knockout of KLK1b22 in 129S1/SVLMJ mice, which in fact led to reduced glucose tolerance. Overall, our studies reveal (to our knowledge) a novel role for KLK1b22 in regulating systemic metabolism and demonstrate the ability of T cell-derived KLK1b22 to regulate systemic metabolism. Notably, however, further studies have revealed that this is a serendipitous finding unrelated to Rheb.


Asunto(s)
Calicreínas , Linfocitos T , Animales , Ratones , Masculino , Femenino , Ratones Endogámicos C57BL , Adipocitos Beige , Linfocitos T/metabolismo , Calicreínas/metabolismo , Glucemia/metabolismo , Resistencia a la Insulina
3.
Sci Adv ; 8(46): eabq5925, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36383674

RESUMEN

6-Diazo-5-oxo-l-norleucine (DON) is a glutamine antagonist that suppresses cancer cell metabolism but concurrently enhances the metabolic fitness of tumor CD8+ T cells. DON showed promising efficacy in clinical trials; however, its development was halted by dose-limiting gastrointestinal (GI) toxicities. Given its clinical potential, we designed DON peptide prodrugs and found DRP-104 [isopropyl(S)-2-((S)-2-acetamido-3-(1H-indol-3-yl)-propanamido)-6-diazo-5-oxo-hexanoate] that was preferentially bioactivated to DON in tumor while bioinactivated to an inert metabolite in GI tissues. In drug distribution studies, DRP-104 delivered a prodigious 11-fold greater exposure of DON to tumor versus GI tissues. DRP-104 affected multiple metabolic pathways in tumor, including decreased glutamine flux into the TCA cycle. In efficacy studies, both DRP-104 and DON caused complete tumor regression; however, DRP-104 had a markedly improved tolerability profile. DRP-104's effect was CD8+ T cell dependent and resulted in robust immunologic memory. DRP-104 represents a first-in-class prodrug with differential metabolism in target versus toxicity tissue. DRP-104 is now in clinical trials under the FDA Fast Track designation.


Asunto(s)
Neoplasias , Profármacos , Humanos , Profármacos/farmacología , Profármacos/uso terapéutico , Diazooxonorleucina/farmacología , Diazooxonorleucina/uso terapéutico , Glutamina/metabolismo , Linfocitos T CD8-positivos/metabolismo , Neoplasias/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico
4.
Sci Immunol ; 7(71): eabh4271, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35622902

RESUMEN

Memory CD8+ T cells are characterized by their ability to persist long after the initial antigen encounter and their capacity to generate a rapid recall response. Recent studies have identified a role for metabolic reprogramming and mitochondrial function in promoting the longevity of memory T cells. However, detailed mechanisms involved in promoting their rapid recall response are incompletely understood. Here, we identify a role for the initial and continued activation of the trifunctional rate-limiting enzyme of the de novo pyrimidine synthesis pathway CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase) as critical in promoting the rapid recall response of previously activated CD8+ T cells. We found that CAD was rapidly phosphorylated upon naïve T cell activation in an mTORC1-dependent manner, yet remained phosphorylated long after initial activation. Previously activated CD8+ T cells displayed continued de novo pyrimidine synthesis in the absence of mitogenic signals, and interfering with this pathway diminished the speed and magnitude of cytokine production upon rechallenge. Inhibition of CAD did not affect cytokine transcript levels but diminished available pre-rRNA (ribosomal RNA), the polycistronic rRNA precursor whose synthesis is the rate-limiting step in ribosomal biogenesis. CAD inhibition additionally decreased levels of detectable ribosomal proteins in previously activated CD8+ T cells. Conversely, overexpression of CAD improved both the cytokine response and proliferation of memory T cells. Overall, our studies reveal a critical role for CAD-induced pyrimidine synthesis and ribosomal biogenesis in promoting the rapid recall response characteristic of memory T cells.


Asunto(s)
Aspartato Carbamoiltransferasa , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante) , Aspartato Carbamoiltransferasa/genética , Aspartato Carbamoiltransferasa/metabolismo , Linfocitos T CD8-positivos/metabolismo , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/metabolismo , Citocinas , Pirimidinas
5.
J Clin Invest ; 130(7): 3865-3884, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32324593

RESUMEN

Myeloid cells comprise a major component of the tumor microenvironment (TME) that promotes tumor growth and immune evasion. By employing a small-molecule inhibitor of glutamine metabolism, not only were we able to inhibit tumor growth, but we markedly inhibited the generation and recruitment of myeloid-derived suppressor cells (MDSCs). Targeting tumor glutamine metabolism led to a decrease in CSF3 and hence recruitment of MDSCs as well as immunogenic cell death, leading to an increase in inflammatory tumor-associated macrophages (TAMs). Alternatively, inhibiting glutamine metabolism of the MDSCs themselves led to activation-induced cell death and conversion of MDSCs to inflammatory macrophages. Surprisingly, blocking glutamine metabolism also inhibited IDO expression of both the tumor and myeloid-derived cells, leading to a marked decrease in kynurenine levels. This in turn inhibited the development of metastasis and further enhanced antitumor immunity. Indeed, targeting glutamine metabolism rendered checkpoint blockade-resistant tumors susceptible to immunotherapy. Overall, our studies define an intimate interplay between the unique metabolism of tumors and the metabolism of suppressive immune cells.


Asunto(s)
Inmunidad Celular , Macrófagos/inmunología , Células Supresoras de Origen Mieloide/inmunología , Neoplasias Experimentales/inmunología , Microambiente Tumoral/inmunología , Animales , Femenino , Glutamina/inmunología , Inmunoterapia , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Células Supresoras de Origen Mieloide/patología , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia
6.
Science ; 366(6468): 1013-1021, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31699883

RESUMEN

The metabolic characteristics of tumors present considerable hurdles to immune cell function and cancer immunotherapy. Using a glutamine antagonist, we metabolically dismantled the immunosuppressive microenvironment of tumors. We demonstrate that glutamine blockade in tumor-bearing mice suppresses oxidative and glycolytic metabolism of cancer cells, leading to decreased hypoxia, acidosis, and nutrient depletion. By contrast, effector T cells responded to glutamine antagonism by markedly up-regulating oxidative metabolism and adopting a long-lived, highly activated phenotype. These divergent changes in cellular metabolism and programming form the basis for potent antitumor responses. Glutamine antagonism therefore exposes a previously undefined difference in metabolic plasticity between cancer cells and effector T cells that can be exploited as a "metabolic checkpoint" for tumor immunotherapy.


Asunto(s)
Compuestos Azo/farmacología , Caproatos/farmacología , Glutamina/metabolismo , Inmunoterapia Adoptiva , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/terapia , Escape del Tumor , Animales , Linfocitos T CD8-positivos/inmunología , Ciclo del Ácido Cítrico/efectos de los fármacos , Metabolismo Energético , Femenino , Glucosa/metabolismo , Glutamina/antagonistas & inhibidores , Memoria Inmunológica , Activación de Linfocitos , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Microambiente Tumoral
7.
J Immunol ; 201(2): 481-492, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29884702

RESUMEN

The mechanistic/mammalian target of rapamycin (mTOR) has emerged as a critical integrator of signals from the immune microenvironment capable of regulating T cell activation, differentiation, and function. The precise role of mTOR in the control of regulatory T cell (Treg) differentiation and function is complex. Pharmacologic inhibition and genetic deletion of mTOR promotes the generation of Tregs even under conditions that would normally promote generation of effector T cells. Alternatively, mTOR activity has been observed to be increased in Tregs, and the genetic deletion of the mTOR complex 1 (mTORC1)-scaffold protein Raptor inhibits Treg function. In this study, by employing both pharmacologic inhibitors and genetically altered T cells, we seek to clarify the role of mTOR in Tregs. Our studies demonstrate that inhibition of mTOR during T cell activation promotes the generation of long-lived central Tregs with a memory-like phenotype in mice. Metabolically, these central memory Tregs possess enhanced spare respiratory capacity, similar to CD8+ memory cells. Alternatively, the generation of effector Tregs (eTregs) requires mTOR function. Indeed, genetic deletion of Rptor leads to the decreased expression of ICOS and PD-1 on the eTregs. Overall, our studies define a subset of mTORC1hi eTregs and mTORC1lo central Tregs.


Asunto(s)
Factores de Transcripción Forkhead/inmunología , Diana Mecanicista del Complejo 1 de la Rapamicina/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Femenino , Memoria Inmunológica/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/inmunología , Activación de Linfocitos/inmunología , Masculino , Ratones , Receptor de Muerte Celular Programada 1/inmunología , Proteína Reguladora Asociada a mTOR/inmunología
8.
Cell Rep ; 20(10): 2439-2454, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28877476

RESUMEN

Tissue-resident macrophages play critical roles in sentinel and homeostatic functions as well as in promoting inflammation and immunity. It has become clear that the generation of these cells is highly dependent upon tissue-specific cues derived from the microenvironment that, in turn, regulate unique differentiation programs. Recently, a role for GATA6 has emerged in the differentiation programming of resident peritoneal macrophages. We identify a critical role for mTOR in integrating cues from the tissue microenvironment in regulating differentiation and metabolic reprogramming. Specifically, inhibition of mTORC2 leads to enhanced GATA6 expression in a FOXO1 dependent fashion. Functionally, inhibition of mTORC2 promotes peritoneal resident macrophage generation in the resolution phase during zymosan-induced peritonitis. Also, mTORC2-deficient peritoneal resident macrophages displayed increased functionality and metabolic reprogramming. Notably, mTORC2 activation distinguishes tissue-resident macrophage proliferation and differentiation from that of M2 macrophages. Overall, our data implicate a selective role for mTORC2 in the differentiation of tissue-resident macrophages.


Asunto(s)
Macrófagos Peritoneales/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Peritonitis/metabolismo , Animales , Femenino , Citometría de Flujo , Proteína Forkhead Box O1/metabolismo , Factor de Transcripción GATA6/metabolismo , Immunoblotting , Macrófagos/metabolismo , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Ratones , Fagocitosis/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Zimosan/toxicidad
9.
J Immunol ; 198(10): 3939-3948, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28424242

RESUMEN

CD4+ T cells lacking the mTORC1 activator Rheb fail to secrete IFN-γ under Th1 polarizing conditions. We hypothesized that this phenotype is due to defects in regulation of the canonical Th1 transcription factor T-bet at the level of protein phosphorylation downstream of mTORC1. To test this hypothesis, we employed targeted mass-spectrometry proteomic analysis-multiple reaction monitoring mass spectrometry. We used this method to detect and quantify predicted phosphopeptides derived from T-bet. By analyzing activated murine wild-type and Rheb-deficient CD4+ T cells, as well as murine CD4+ T cells activated in the presence of rapamycin, a pharmacologic inhibitor of mTORC1, we were able to identify six T-bet phosphorylation sites. Five of these are novel, and four sites are consistently dephosphorylated in both Rheb-deficient CD4+ T cells and T cells treated with rapamycin, suggesting mTORC1 signaling controls their phosphorylation. Alanine mutagenesis of each of the six phosphorylation sites was tested for the ability to impair IFN-γ expression. Single phosphorylation site mutants still support induction of IFN-γ expression; however, simultaneous mutation of three of the mTORC1-dependent sites results in significantly reduced IFN-γ expression. The reduced activity of the triple mutant T-bet is associated with its failure to recruit chromatin remodeling complexes to the Ifng gene promoter. These results establish a novel mechanism by which mTORC1 regulates Th1 differentiation, through control of T-bet phosphorylation.


Asunto(s)
Complejos Multiproteicos/metabolismo , Proteínas de Dominio T Box/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Células TH1/fisiología , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica , Interferón gamma/biosíntesis , Interferón gamma/genética , Interferón gamma/inmunología , Espectrometría de Masas/métodos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/genética , Mutación , Fosforilación , Proteómica/métodos , Sirolimus/farmacología , Proteínas de Dominio T Box/química , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/inmunología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Células TH1/inmunología , Células Th2/inmunología
10.
Oncotarget ; 5(4): 1062-70, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24658085

RESUMEN

Non-small cell lung cancer (NSCLC) accounts for 80-85% of lung cancer cases, and almost half of newly diagnosed patients have metastatic disease. Pemetrexed is a widely used drug for NSCLC and inhibits several folate-dependent enzymes including thymidylate synthase (TS). Increased expression of TS confers resistance to pemetrexed in vitro and predicts poor response to pemetrexed. Rapamycin is an mTOR inhibitor and suppresses cap-dependent synthesis of specific mRNA species. Here, we show that the combination of rapamycin and pemetrexed synergistically inhibits proliferation of NSCLC cells. Although pemetrexed as a single agent induced TS, pretreatment with rapamycin suppressed pemetrexed-induced TS expression. In vivo, the combination of rapamycin and pemetrexed inhibited growth of NSCLC xenografts, which correlated with decreased mTOR activity and suppression of pemetrexed-induced TS expression. The ability of rapamycin to enhance the efficacy of pemetrexed and prevent TS expression has implications for the design of Phase I and/or Phase II NSCLC clinical trials with mTOR inhibitors in combination with pemetrexed.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Glutamatos/farmacología , Guanina/análogos & derivados , Neoplasias Pulmonares/tratamiento farmacológico , Sirolimus/farmacología , Timidilato Sintasa/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo , Sinergismo Farmacológico , Femenino , Glutamatos/administración & dosificación , Guanina/administración & dosificación , Guanina/farmacología , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Desnudos , Pemetrexed , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA