Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Sci Health B ; 58(1): 45-50, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36661390

RESUMEN

Medium chain fatty acid (MCFA) treatment (0.75% C6, hexanoic; C8, octanoic; C10, decanoic; or equal proportion mixtures of C6:C8:C10:C12 or C8:C10/g; C12 = dodecanoic acid) of aerobically-exposed corn silage on spoilage and pathogenic microbes and rumen fermentation were evaluated in vitro. After 24 h aerobic incubation (37 °C), microbial enumeration revealed 3 log10 colony-forming units (CFU)/g fewer (P = 0.03) wild-type yeast and molds in C8:C10-treated silage than controls. Compared with controls, wild-type enterococci decreased (P < 0.01) in all treatments except the C6:C8:C10:C12 mixture; lactic acid bacteria were decreased (P < 0.01) in all treatments except C6 and the C6:C8:C10:C12 mixture. Total aerobes and inoculated Staphylococcus aureus or Listeria monocytogenes were unaffected by treatment (P > 0.05). Anaerobic incubation (24 h at 39 °C) of ruminal fluid (10 mL) with 0.02 g overnight air-exposed MCFA-treated corn silage revealed higher hydrogen accumulations (P = 0.03) with the C8:C10 mixture than controls. Methane, acetate, propionate, butyrate, or estimates of fermented hexose were unaffected. Acetate:propionate ratios were higher (P < 0.01) and fermentation efficiencies were marginally lower (P < 0.01) with C8- or C8:C10-treated silage than controls. Further research is warranted to optimize treatments to target unwanted microbes without adversely affecting beneficial microbes.


Asunto(s)
Rumen , Ensilaje , Animales , Ensilaje/análisis , Ensilaje/microbiología , Rumen/microbiología , Zea mays , Propionatos/metabolismo , Fermentación , Ácidos Grasos/metabolismo , Dieta
2.
Front Vet Sci ; 9: 930980, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35799835

RESUMEN

Poultry litter is a good crude protein supplement for ruminants but must be treated to kill pathogens before feeding. Composting effectively kills pathogens but risks loss of ammonia due to uric acid degradation. The objectives of this study were to test the ability of tannins to reduce pathogens and preserve uric acid during poultry litter composting. In two experiments, poultry litter was mixed with phosphate buffer and distributed to 50-ml tubes (three tubes/treatment per sample day) amended with 1 ml buffer alone or buffer containing pine bark, quebracho, chestnut, or mimosa tannins. Treatments achieved 0.63% (wt/wt) quebracho, chestnut, or mimosa tannins in experiment 1, or 4.5% pine bark or 9% quebracho, chestnut, or mimosa tannins in experiment 2. Tubes were inoculated with a novobiocin- and nalidixic acid-resistant Salmonella typhimurium, closed with caps, and incubated at successive 3-day increments at 22, 37, and 42°C, respectively. In experiment 1, bacterial counts in contents collected on days 0, 6, and 9 revealed a treatment by day effect (p < 0.03), with the Salmonella challenge being 1.3 log10 CFU/g higher in quebracho-treated composts than in untreated controls after 6 days of composting. After 9 days of composting, Salmonella, wildtype Escherichia coli, and total aerobes in untreated and all tannin-treated composts were decreased by about 2.0 log10 CFU/g compared to day 0 numbers (3.06, 3.75, and 7.77 log10 CFU/g, respectively). Urea and ammonia concentrations tended (p < 0.10) to be increased in chestnut-treated composts compared to controls and concentrations of uric acid, urea, and ammonia were higher (p < 0.05) after 9 days of composting than on day 0. Despite higher tannin application in experiment 2, antibacterial effects of treatment or day of composting were not observed (p > 0.05). However, treatment by time of composting interactions was observed (p < 0.05), with quebracho- and chestnut-treated composts accumulating more uric acid after 24 h and 9 days of composting and chestnut-, mimosa- or quebracho-treated composts accumulating less ammonia than untreated composts. Results demonstrate that composting may effectively control pathogens and that tannin treatment can help preserve the crude protein quality of composting poultry litter.

3.
J Anim Sci ; 98(3)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32064520

RESUMEN

The influence of sodium chlorate (SC), ferulic acid (FA), and essential oils (EO) was examined on the survivability of two porcine diarrhetic enterotoxigenic Escherichia coli (ETEC) strains (F18 and K88) and populations of porcine fecal bacteria. Fecal bacterial populations were examined by denaturing gradient gel electrophoresis (DGGE) and identification by 16S gene sequencing. The treatments were control (no additives), 10 mM SC, 2.5 mg FA /mL, a 1.5% vol/vol solution of an EO mixture as well as mixtures of EO + SC, EO + FA, and FA + SC at each of the aforementioned concentrations. EO were a commercial blend of oregano oil and cinnamon oil with water and citric acid. Freshly collected porcine feces in half-strength Mueller Hinton broth was inoculated with E. coli F18 (Trial 1) or E. coli K88 (Trial 2). The fecal-E. coli suspensions were transferred to crimp top tubes preloaded with the treatment compounds. Quantitative enumeration was at 0, 6, and 24 h. All treatments reduced (P < 0.05) the counts of E. coli F18 at 6 and 24 h. With the exception of similarity coefficient (%SC), all the other treatments reduced (P < 0.05) the K88 counts at 24 h. The most effective treatments to reduce the F18 and K88 CFU numbers were those containing EO. Results of DGGE revealed that Dice percentage similarity coefficients (%SC) of bacterial profiles among treatment groups varied from 81.3% to 100%SC. The results of gene sequencing showed that, except for SC at 24 h, all the other treatments reduced the counts of the family Enterobacteriaceae, while Lactobacillaceae and Ruminococcaceae increased and Clostridiaceae decreased in all treatments. In conclusion, all treatments were effective in reducing the ETEC, but EO mixture was the most effective. The porcine microbial communities may be influenced by the studied treatments.


Asunto(s)
Bacterias/efectos de los fármacos , Cloratos/farmacología , Ácidos Cumáricos/farmacología , Heces/microbiología , Aceites Volátiles/farmacología , Porcinos , Animales , Bacterias/clasificación , Cinnamomum zeylanicum , Microbiota , Origanum , Aceites de Plantas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...