Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Nanoscale Adv ; 6(14): 3668-3679, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38989524

RESUMEN

Water scarcity is an alarming situation across the globe. Several methods have been reported in the literature to minimize the water shortage problem. Sorbent-based atmospheric water harvesting (SBAWH) is considered an energy-efficient, low-cost strategy, and sustainable approach. In the present study, the synthesis of graphene oxide (GO) was carried out using a modified Hummers' method, while the synthesis of MOF-5 and a GO/MOF-5 composite was carried out using a solvothermal approach. The synthesized materials were characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The phase composition and crystallinity of all synthesized samples were confirmed by XRD analysis. SEM analysis provided information about the surface morphology of all synthesized samples. The adsorption of water vapors on surfaces of GO, MOF-5, and the GO/MOF-5 composite was evaluated by FTIR analysis. The negative charge was explored by the PZC technique on the surface of all synthesized materials. The water adsorption characteristics of GO, MOF-5, and the GO/MOF-5 composite were evaluated using an atmospheric water harvesting (AWH) plant. The maximum adsorption capacity of 542 mg g-1 was achieved by the MOF at 55% RH (relative humidity), while a low adsorption capacity of the MOF was observed at higher humidity values. This problem was overcome by making a GO/MOF-5 composite. GO imparts structural stability to the MOF-5 structure at higher humidity values. The maximum adsorption capacity of 1137 mg g-1 was achieved by the GO/MOF-5 composite at 75% RH. Several isotherm models, such as Langmuir, Freundlich, and Temkin, were applied to confirm the single-site occupation by water molecules and chemisorption behavior. Several thermodynamic properties were calculated, including isosteric heat (Q st), Gibbs free energy (ΔG), and sorption entropy (ΔS). The overall thermodynamics study confirms that the adsorption process is spontaneous and exothermic. In addition, second-order kinetics confirms that all synthesized material shows chemisorption behavior.

2.
Comput Biol Med ; 178: 108738, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38870724

RESUMEN

Neisseria meningitidis, commonly known as the meningococcus, leads to substantial illness and death among children and young adults globally, revealing as either epidemic or sporadic meningitis and/or septicemia. In this study, we have designed a novel peptide-based chimeric vaccine candidate against the N. meningitidis strain 331,401 serogroup X. Through rigorous analysis of subtractive genomics, two essential cytoplasmic proteins, namely UPI000012E8E0(UDP-3-O-acyl-GlcNAc deacetylase) and UPI0000ECF4A9(UDP-N-acetylglucosamine acyltransferase) emerged as potential drug targets. Additionally, using reverse vaccinology, the outer membrane protein UPI0001F4D537 (Membrane fusion protein MtrC) identified by subcellular localization and recognized for its known indispensable role in bacterial survival was identified as a novel chimeric vaccine target. Following a careful comparison of MHC-I, MHC-II, T-cell, and B-cell epitopes, three epitopes derived from UPI0001F4D537 were linked with three types of linkers-GGGS, EAAAK, and the essential PADRE-for vaccine construction. This resulted in eight distinct vaccine models (V1-V8). Among them V1 model was selected as the final vaccine construct. It exhibits exceptional immunogenicity, safety, and enhanced antigenicity, with 97.7 % of its residues in the Ramachandran plot's most favored region. Subsequently, the vaccine structure was docked with the TLR4/MD2 complex and six different HLA allele receptors using the HADDOCK server. The docking resulted in the lowest HADDOCK score of 39.3 ± 9.0 for TLR/MD2. Immune stimulation showed a strong immune response, including antibodies creation and the activation of B-cells, T Cytotoxic cells, T Helper cells, Natural Killer cells, and interleukins. Furthermore, the vaccine construct was successfully expressed in the Escherichia coli system by reverse transcription, optimization, and ligation in the pET-28a (+) vector for the expression study. The current study proposes V1 construct has the potential to elicit both cellular and humoral responses, crucial for the developing an epitope-based vaccine against N. meningitidis strain 331,401 serogroup X.

3.
Pest Manag Sci ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924668

RESUMEN

BACKGROUND: Dicer1 plays a crucial role in regulating the development and reproduction of insects. Knockout of Dicer1 causes pupal deformity, low eclosion and low fecundity in Plutella xylostella, but the mechanism behind this phenomenon is not clear. This study aims to identify differentially-expressed genes and miRNAs in the Dicer1-knockout strain (ΔPxDcr-1) and assess their impact on the reproduction and development of P. xylostella. RESULTS: The knockout of Dicer1 affected the expression of genes including the adipokinetic hormone/corazonin-related peptide receptor (PxACPR). The expression of PxACPR was upregulated, and the expression of miR-8514-5p was downregulated in ΔPxDcr-1 of P. xylostella. The dual luciferase reporter assay and pull-down assay showed that miR-8514-5p bound to PxACPR in vitro and in vivo. The expression profiles demonstrated a negative correlation between PxACPR mRNA and miR-8514-5p in different developmental stages of the wild-type strain. Both the miR-8514-5p agomir and double-stranded RNA of ACPR (dsPxACPR) injected into the pre-pupae inhibited the mRNA level of PxACPR, causing high mortality and deformity of pupae, and low fecundity and hatching rate, which were consistent with the phenotype of ΔPxDcr-1. The injection of miR-8514-5p antagomir caused a similar phenotype to the injection of miR-8514-5p agomir. Additionally, the injection of miR-8514-5p antagomir significantly rescued the phenotype caused by dsPxACPR. CONCLUSION: These results indicate that miR-8514-5p affects the development and reproduction of P. xylostella by regulating PxACPR, and the homeostasis of PxACPR expression is essential for the development and reproduction of P. xylostella. © 2024 Society of Chemical Industry.

4.
PLoS One ; 19(6): e0305091, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38900819

RESUMEN

Short and long-term sound-induced stress on daily basis can affect the physiology of avian individuals because they are more susceptible to sound stress in an open environment. OBJECTIVES: An ex-situ study was carried out to determine the impact of noise on physiology and ptilochronology of non-breeding male domesticated quail birds. METHODOLOGY: During 60-days long trial, male quail birds, aged 5-weeks, weighing (c.100gm) were used. Out of 72 experimental birds, 18 birds were assigned to the Control Group (G1) while remaining 54 birds were divided equally into 3 treatment groups: Road Traffic noise (G2), Military activity noise (G3) and Human Activities noise (G4). Birds were housed in standard-sized separate cages (20 ×45 × 20 cm), every bird was kept apart in separate cage in open laboratory under maintained environmental conditions. Millet seeds and water were provided to all the experimental birds ad libitum. Noise originated from several sources of recorded high-intensity music (1125 Hz/ 90 dB), was administered for 5-6 hours per day. Observations were recorded in the morning and afternoon. The experiment was conducted during the non-breeding season from August to October in triplicate. Blood sampling was done after 60 days. RESULTS: According to the current study, noise stress significantly (p<0.05) increased the concentrations of creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), bilirubin, uric acid, cholesterol, triglycerides, total protein, and glucose while a decline in the levels of albumin was seen in treatment birds of G3. While in terms of hematology, total white blood cells count (TWBC), total red blood cells count (TRBC), mean cell volume (MCV) & packed cell volume (PCV) concentrations were raised in blood of treatment birds of G3. In terms of hormones, noise stress significantly (p<0.05) increased the serum concentrations of Corticosterone in G3 while a significant (p<0.05) decline was observed in the concentrations of luteinizing hormone (LH), thyroid stimulating hormone (TSH), and follicle stimulating hormone (FSH) in the same group. Moreover, fault bar formation in G3 was more prominent than others. CONCLUSION: Noise stress can significantly affect serology, hematology, hormonal physiology and ptilochronology in quail birds.


Asunto(s)
Ruido , Animales , Masculino , Ruido/efectos adversos , Estrés Fisiológico , Codorniz/fisiología , Corticosterona/sangre
5.
RSC Adv ; 14(27): 19539-19549, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38895531

RESUMEN

Ascorbic acid plays a pivotal role in the human body. It maintains the robustness, enlargement, and elasticity of the collagen triple helix. However, the abnormal concentration of ascorbic acid causes various diseases, such as scurvy, cardiovascular diseases, gingival bleeding, urinary stones, diarrhea, stomach convulsions, etc. In the present work, an iron-doped hydroxyapatite (HAp@Fe2O3)-based biosensor was developed for the colorimetric detection of ascorbic acid based on a low-cost, biocompatible, and ubiquitous material. Due to the catalytic nature of HAp owing to the acidic and basic moieties within the structure, it was used as a template for HAp@Fe2O3 synthesis. This approach provides an active as well as large surface area for the sensing of ascorbic acid. The synthesized platform was characterized by various techniques, such as UV-Vis, FTIR, SEM, XRD, TGA, EDX, etc. The HAp@Fe2O3 demonstrated inherent peroxidase-like activity in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) oxidized with the assistance of H2O2. It resulted in the color changing to blue-green, and after the addition of ascorbic acid, the color changed to colorless, resulting in the reduction of TMB. To achieve optimal sensing parameters, experimental conditions were optimized. The quantity of HAp@Fe2O3, H2O2, pH, TMB, time, and the concentration of ascorbic acid were fine-tuned. The linear range for the proposed sensor was 0.6-56 µM, along with a limit of detection of 0.16 µM and a limit of quantification of 0.53 µM. The proposed sensor detects ascorbic acid within 75 seconds at room temperature. The proposed platform was also applied to quantitatively check the concentration of ascorbic acid in a physiological solution.

6.
Plant J ; 119(2): 861-878, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761097

RESUMEN

Low phytic acid (lpa) crop is considered as an effective strategy to improve crop nutritional quality, but a substantial decrease in phytic acid (PA) usually has negative effect on agronomic performance and its response to environment adversities. Myo-inositol-3-phosphate synthase (MIPS) is the rate-limiting enzyme in PA biosynthesis pathway, and regarded as the prime target for engineering lpa crop. In this paper, the rice MIPS gene (RINO2) knockout mutants and its wild type were performed to investigate the genotype-dependent alteration in the heat injury-induced spikelet fertility and its underlying mechanism for rice plants being imposed to heat stress at anthesis. Results indicated that RINO2 knockout significantly enhanced the susceptibility of rice spikelet fertility to heat injury, due to the severely exacerbated obstacles in pollen germination and pollen tube growth in pistil for RINO2 knockout under high temperature (HT) at anthesis. The loss of RINO2 function caused a marked reduction in inositol and phosphatidylinositol derivative concentrations in the HT-stressed pollen grains, which resulted in the strikingly lower content of phosphatidylinositol 4,5-diphosphate (PI (4,5) P2) in germinating pollen grain and pollen tube. The insufficient supply of PI (4,5) P2 in the HT-stressed pollen grains disrupted normal Ca2+ gradient in the apical region of pollen tubes and actin filament cytoskeleton in growing pollen tubes. The severely repressed biosynthesis of PI (4,5) P2 was among the regulatory switch steps leading to the impaired pollen germination and deformed pollen tube growth for the HT-stressed pollens of RINO2 knockout mutants.


Asunto(s)
Citoesqueleto de Actina , Germinación , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/fisiología , Oryza/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Polen/crecimiento & desarrollo , Polen/genética , Señalización del Calcio , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Tubo Polínico/genética , Calor , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Liasas Intramoleculares/metabolismo , Liasas Intramoleculares/genética , Inositol/metabolismo , Inositol/análogos & derivados
7.
Clin Cardiol ; 47(5): e24283, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38767042

RESUMEN

BACKGROUND: Semaglutide, a once-weekly glucagon-like peptide-1 receptor agonist, has shown promise in weight management and cardiovascular outcomes in other populations. This study aimed to evaluate the efficacy of semaglutide in heart failure with preserved ejection fraction (HFpEF) patients with obesity. METHODS: A retrospective study analyzed 318 patients with HFpEF, of which 104 received semaglutide and 214 received placebo. Primary endpoints included evaluating changes in exercise capacity and weight management. RESULTS: Semaglutide treatment led to significant improvements in the primary endpoints. Patients in the semaglutide group demonstrated substantial enhancements in exercise capacity, as measured by the 6-min walk distance, compared to the placebo group (mean difference 15.1 meters, 95% CI 5.8 to 24.4, p = 0.002). Additionally, semaglutide resulted in substantial weight loss compared to placebo (mean difference -2.9%, 95% CI -4.1--1.7, p = 0.001). Several secondary endpoints, including reductions in C-reactive protein levels and improvements in other clinical parameters, further supported the efficacy of semaglutide. Adverse events were generally well-tolerated, with no unexpected safety concerns. CONCLUSION: Semaglutide demonstrated significant clinical benefits in HFpEF patients with obesity, as evidenced by improved symptoms, physical function, and weight reduction.


Asunto(s)
Péptidos Similares al Glucagón , Insuficiencia Cardíaca , Obesidad , Volumen Sistólico , Humanos , Péptidos Similares al Glucagón/uso terapéutico , Péptidos Similares al Glucagón/efectos adversos , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Masculino , Femenino , Estudios Retrospectivos , Volumen Sistólico/efectos de los fármacos , Obesidad/tratamiento farmacológico , Obesidad/fisiopatología , Obesidad/complicaciones , Resultado del Tratamiento , Anciano , Persona de Mediana Edad , Función Ventricular Izquierda/efectos de los fármacos , Tolerancia al Ejercicio/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Factores de Tiempo , Recuperación de la Función
8.
Front Bioeng Biotechnol ; 12: 1364700, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694624

RESUMEN

Dopamine is one of the most important neurotransmitters and plays a crucial role in various neurological, renal, and cardiovascular systems. However, the abnormal levels of dopamine mainly point to Parkinson's, Alzheimer's, cardiovascular diseases, etc. Hydroxyapatite (HAp), owing to its catalytic nature, nanoporous structure, easy synthesis, and biocompatibility, is a promising matrix material. These characteristics make HAp a material of choice for doping metals such as cobalt. The synthesized cobalt-doped hydroxyapatite (Co-HAp) was used as a colorimetric sensing platform for dopamine. The successful synthesis of the platform was confirmed by characterization with FTIR, SEM, EDX, XRD, TGA, etc. The platform demonstrated intrinsic peroxidase-like activity in the presence of H2O2, resulting in the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The proposed sensor detected dopamine in a linear range of 0.9-35 µM, a limit of detection of 0.51 µM, limit of quantification of 1.7 µM, and an R2 of 0.993. The optimization of the proposed sensor was done with different parameters, such as the amount of mimic enzyme, H2O2, pH, TMB concentration, and time. The proposed sensor showed the best response at 5 mg of the mimic enzyme, pH 5, 12 mM TMB, and 8 mM H2O2, with a short response time of only 2 min. The fabricated platform was successfully applied to detect dopamine in physiological solutions.

9.
Saudi Pharm J ; 32(6): 102096, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38757071

RESUMEN

The aim of the current study was to explore the potential of human plasma-derived exosomes as versatile carriers for drug delivery by employing various active and passive loading methods. Exosomes were isolated from human plasma using differential centrifugation and ultrafiltration method. Drug loading was achieved by employing sonication and freeze thaw methods, facilitating effective drug encapsulation within exosomes for delivery. Each approach was examined for its effectiveness, loading efficiency and ability to preserve membrane stability. Methotrexate (MTX), a weak acid model drug was loaded at a concentration of 2.2 µM to exosomes underwent characterization using various techniques such as particle size analysis, transmission electron microscopy and drug loading capacity. Human plasma derived exosomes showed a mean size of 162.15 ± 28.21 nm and zeta potential of -30.6 ± 0.71 mV. These exosomes were successfully loaded with MTX demonstrated a better drug encapsulation of 64.538 ± 1.54 % by freeze thaw method in comparison 55.515 ± 1.907 % by sonication. In-vitro drug release displayed 60 % loaded drug released within 72 h by freeze thaw method that was significantly different from that by sonication method i.e., 99 % within 72 h (p value 0.0045). Moreover, cell viability of exosomes loaded by freeze thaw method was significantly higher than that by sonication method (p value 0.0091) suggested that there was membrane disruption by sonication method. In conclusion, this study offers valuable insights into the potential of human plasma-derived exosomes loaded by freeze thaw method suggest as a promising carrier for improved drug loading and maintenance of exosomal membrane integrity.

10.
Med Image Anal ; 95: 103207, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776843

RESUMEN

The lack of annotated datasets is a major bottleneck for training new task-specific supervised machine learning models, considering that manual annotation is extremely expensive and time-consuming. To address this problem, we present MONAI Label, a free and open-source framework that facilitates the development of applications based on artificial intelligence (AI) models that aim at reducing the time required to annotate radiology datasets. Through MONAI Label, researchers can develop AI annotation applications focusing on their domain of expertise. It allows researchers to readily deploy their apps as services, which can be made available to clinicians via their preferred user interface. Currently, MONAI Label readily supports locally installed (3D Slicer) and web-based (OHIF) frontends and offers two active learning strategies to facilitate and speed up the training of segmentation algorithms. MONAI Label allows researchers to make incremental improvements to their AI-based annotation application by making them available to other researchers and clinicians alike. Additionally, MONAI Label provides sample AI-based interactive and non-interactive labeling applications, that can be used directly off the shelf, as plug-and-play to any given dataset. Significant reduced annotation times using the interactive model can be observed on two public datasets.


Asunto(s)
Inteligencia Artificial , Imagenología Tridimensional , Humanos , Imagenología Tridimensional/métodos , Algoritmos , Programas Informáticos
11.
Environ Sci Pollut Res Int ; 31(23): 34200-34213, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38702484

RESUMEN

Arsenic (As) pollution in cultivated soils poses a significant risk to the sustainable growth of agriculture and jeopardizes food security. However, the mechanisms underlying how zinc (Zn) regulates the toxic effects induced by As in plants remain poorly understood. Hence, this study aimed to explore the potential of ZnO as an effective and environmentally friendly amendment to alleviate As toxicity in rice, thereby addressing the significant risk posed by As pollution in cultivated soils. Through a hydroponic experiment, the study assessed the mitigating effects of different ZnO dosages (Zn5, 5 mg L-1; Zn15, 15 mg L-1; Zn30, 30 mg L-1) on rice seedlings exposed to varying levels of As stress (As0, 0 µM L-1; As25, 25 µM L-1). The findings of the study demonstrate significant improvements in plant height and biomass (shoot and root), with a notable increase of 16-40% observed in the Zn15 treatment, and an even more substantial enhancement of 29-53% observed in the Zn30 treatment under As stress, compared to respective control treatment. Furthermore, in the Zn30 treatment, the shoot and root As contents substantially reduced by 47% and 63%, respectively, relative to the control treatment. The elevated Zn contents in shoots and roots enhanced antioxidant enzyme activities (POD, SOD, and CAT), and decreased MDA contents (13-25%) and H2O2 contents (11-27%), indicating the mitigation of oxidative stress. Moreover, the expression of antioxidant-related genes, OsSOD-Cu/Zn, OsCATA, OsCATB, and OsAPX1 was reduced when rice seedlings were exposed to As stress and significantly enhanced after Zn addition. Overall, the research suggests that ZnO application could effectively mitigate As uptake and toxicity in rice plants cultivated in As-contaminated soils, offering potential solutions for sustainable agriculture and food security.


Asunto(s)
Arsénico , Oryza , Estrés Oxidativo , Contaminantes del Suelo , Óxido de Zinc , Oryza/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Suelo/química , Antioxidantes/metabolismo
12.
Behav Res Ther ; 178: 104542, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38648683

RESUMEN

Evolutionary theorizing has given rise to the idea that responding to any particular threat may be more mandatory than responding to any particular reward. The present three experiments (total N = 375) sought to provide support for this perspective in an emotion dynamics task in which participants continuously rated their affective state in response to appetitive (reward-related) versus aversive (threat-related) images. Even when equating images for arousal and extremity, several negativity effects (e.g., steeper reactivity slopes in response to aversive images) were found. These negativity effects can serve as an experimental model of threat sensitivity, which should predispose some individuals, more than others, to symptoms related to fear and anxiety. This point was made with respect to sex differences, given that women (relative to men) are diagnosed with anxiety disorders at higher rates. Sex differences were pronounced and extensions of this work, both basic and applied, are proposed.


Asunto(s)
Emociones , Miedo , Humanos , Masculino , Femenino , Adulto Joven , Miedo/psicología , Miedo/fisiología , Emociones/fisiología , Adulto , Caracteres Sexuales , Ansiedad/psicología , Adolescente , Factores Sexuales , Nivel de Alerta/fisiología , Recompensa
13.
Reprod Domest Anim ; 59(3): e14551, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38462999

RESUMEN

Cryopreservation is one of the reliable techniques for long-term storage of sperm. The success of this technique depends on the choice of cryoprotectant; therefore, a plethora of literature has reported the effects of different cryoprotective agents so far. Kappa-carrageenan (κ-carrageenan) is a hydrocolloid polysaccharide extracted from red marine seaweed. Its unique property makes it a promising option as a non-colligative cryoprotectant. The current study aims to evaluate the cryoprotective effect of k-carrageenan along with glycerol on ram sperm quality both after equilibration and freezing. Nine Kajli rams were utilized in this experiment for semen collection through an artificial vagina maintained at 42°C. Qualified samples were diluted in tris egg yolk glycerol (TEYG) extender containing different concentrations of k-carrageenan as 0 mg/mL (control), 0.2, 0.5, 0.8 and 1 mg/mL. Post-thaw assessment was done at 37°C after 24 h of storage, which showed a significant improvement (p < .05) in sperm viability, motility, membrane and acrosome integrity in an extender containing k-carrageenan at a concentration of 0.5 mg/mL compared to control. It is concluded from the current study that the combination of glycerol and 0.5 mg/mL concentration of k-carrageenan improved the sperm post-thaw quality.


Asunto(s)
Preservación de Semen , Semen , Masculino , Ovinos , Animales , Carragenina/farmacología , Glicerol/farmacología , Motilidad Espermática , Espermatozoides , Crioprotectores/farmacología , Criopreservación/veterinaria , Criopreservación/métodos , Oveja Doméstica , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Suplementos Dietéticos
14.
Open Med (Wars) ; 19(1): 20240905, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463516

RESUMEN

Hepatitis A virus (HAV) infection can cause extra-hepatic manifestations like myocarditis. An 8-year-old female with HAV infection presented with fever, abdominal pain, vomiting, and icterus. She developed viral myocarditis with complete AV dissociation on ECG and was treated with a temporary pacemaker, but her condition worsened, and she died. Hepatitis A viral infection can be associated with viral myocarditis and complete heart block that can lead to cardiogenic shock and death eventually.

16.
Environ Sci Pollut Res Int ; 31(17): 24836-24850, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38456983

RESUMEN

Chromium (Cr) contamination in soil-plant systems poses a pressing environmental challenge due to its detrimental impacts on plant growth and human health. Results exhibited that Cr stress decreased shoot biomass, root biomass, leaf relative water content, and plant height. However, single and co-application of Bacillus subtilis (BS) and arbuscular mycorrhizal fungi (AMF) considerably enhanced shoot biomass (+ 21%), root biomass (+ 2%), leaf relative water content (+ 26%), and plant height (+ 13) under Cr stress. The frequency of mycorrhizal (F) association (+ 5%), mycorrhizal colonization (+ 13%), and abundance of arbuscules (+ 5%) in the non-stressed soil was enhanced when inoculated with combined BS and AMF as compared to Cr-stressed soil. The co-inoculation with BS and AMF considerably enhanced total chlorophyll, carotenoids, and proline content in Cr-stressed plants. Cr-stressed plants resulted in attenuated response in SOD, POD, CAT, and GR activities when inoculated with BS and AMF consortia by altering oxidative stress biomarkers (H2O2 and MDA). In Cr-stressed plants, the combined application of BS and AMF considerably enhanced proline metabolism, for instance, P5CR (+ 17%), P5CS (+ 28%), OAT (- 22%), and ProDH (- 113%) as compared to control. Sole inoculation with AMF downregulated the expression of SIPIP2;1, SIPIP2;5, and SIPIP2;7 in Cr-stressed plants. However, the expression of NCED1 was downregulated with the application of sole AMF. In contrast, the relative expression of Le4 was upregulated in the presence of AMF and BS combination in Cr-stressed plants. Therefore, it is concluded that co-application of BS and AMF enhanced Cr tolerance by enhancing proline metabolism, antioxidant enzymes, and aquaporin gene expression. Future study might concentrate on elucidating the molecular processes behind the synergistic benefits of BS and AMF, as well as affirming their effectiveness in field experiments under a variety of environmental situations. Long-term research on the effect of microbial inoculation on soil health and plant production might also help to design sustainable chromium remediation solutions.


Asunto(s)
Micorrizas , Solanum lycopersicum , Humanos , Antioxidantes/metabolismo , Cromo , Peróxido de Hidrógeno/metabolismo , Micorrizas/fisiología , Bacterias/metabolismo , Plantas/metabolismo , Prolina/metabolismo , Suelo , Agua , Expresión Génica , Raíces de Plantas/metabolismo
17.
Microb Cell Fact ; 23(1): 83, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486280

RESUMEN

BACKGROUND: Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the most abundant soluble protein in nature. Extensive studies have been conducted for improving its activity in photosynthesis through approaches like protein engineering. Concurrently, multiple biochemical and radiolabeling assays have been developed for determining its activity. Although these existing assays yield reliable results, they require addition of multiple external components, rendering them less convenient and expensive. Therefore, in this study, we have developed two relatively cheaper, convenient, and easily reproducible assays for quantitative and qualitative estimation of RuBisCO activity. RESULTS: We simplified a contemporary NADH based spectrophotometric RuBisCO assay by using cyanobacterial cell lysate as the source for Calvin cycle enzymes. We analyzed the influence of inorganic carbon substrates, CO2 and NaHCO3, and varying protein concentrations on RuBisCO activity. Ribulose-1,5-bisphosphate (RuBP) consumption rates for the cultures grown under 5% CO2 were 5-7 times higher than the ones grown with 20 mM NaHCO3, at different protein concentrations. The difference could be due to the impaired activity of carbonic anhydrase in the cell lysate, which is required for the conversion of HCO3- to CO2. The highest RuBisCO activity of 2.13 nmol of NAD+/ µg of Chl-a/ min was observed with 50 µg of protein and 5% CO2. Additionally, we developed a novel RNA-sensor based fluorescence assay that is based on the principle of tracking the kinetics of ATP hydrolysis to ADP during the conversion of 3-phosphoglycerate (3-PG) to 1,3-bisphosphoglycerate (1,3-BPG) in the Calvin cycle. Under in vitro conditions, the fluorometric assay exhibited  ~ 3.4-fold slower reaction rate (0.37 min-1) than the biochemical assay when using 5% CO2. We also confirmed the in vivo application of this assay, where increase in the fluorescence was observed with the recombinant strain of Synechocystis sp. PCC 6803 (SSL142) expressing the ADP-specific RNA sensor, compared to the WT. In addition, SSL142 exhibited three-fold higher fluorescence when supplemented with 20 mM NaHCO3 as compared to the cells that were grown without NaHCO3 supplementation. CONCLUSIONS: Overall, we have developed a simplified biochemical assay for monitoring RuBisCO activity and demonstrated that it can provide reliable results as compared to the prior literature. Furthermore, the biochemical assay using 5% CO2 (100% relative activity) provided faster RuBP consumption rate compared to the biochemical assay utilizing 20 mM NaHCO3 (30.70% relative activity) and the in vitro fluorometric assay using 5% CO2 (29.64% relative activity). Therefore, the absorbance-based biochemical assay using 5% CO2 or higher would be suitable for in vitro quantification of the RuBisCO activity. On the other hand, the RNA-sensor based in vivo fluorometric assay can be applied for qualitative analysis and be used for high-throughput screening of RuBisCO variants. As RuBisCO is an enzyme shared amongst all the photoautotrophs, the assays developed in this study can easily be extended for analyzing the RuBisCO activities even in microalgae and higher plants.


Asunto(s)
Dióxido de Carbono , Ribulosa-Bifosfato Carboxilasa , Oxidación-Reducción , Bioensayo , Carbono , Fotosíntesis
18.
Sci Prog ; 107(1): 368504241236026, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38490163

RESUMEN

Termites cause a serious menace to wooden structures all over the world. They rely mostly on entozoic fauna residing in their hindgut for the digestion of cellulosic and hemicellulosic materials. One of the ways to control termites is through their gut symbionts. The present study was designed to characterize the hindgut bacteria isolated from Odontotermes obesus and Heterotermes indicola. Furthermore, the growth inhibitory effect of eight tropical plant extracts was investigated to find out potential control agents for these bacterial isolates. The characterization of bacteria was carried out based on their morphology, Gram staining, biochemical and amplification of 16SrRNA gene. Amplified products were sequenced to confirm their relationship with bacterial isolates from termites of other regions. The growth inhibitory effect of ethanolic leaf extracts of eight plants was evaluated in an invitro agar well diffusion method. Qualitative and quantitative phytochemical analysis of the most effective plant was carried out to learn about bioactive agents. The results confirmed the presence of five bacteria from each termite species. The Bacillus cereus, Escherichia coli, and Lysinibacillus fusiformis were common to both termites whereas Lysinibacillus xylanilyticus and Lysinibacillus macrolides were found in O. obesus only and H. indicola harbor Bacillus subtilis and Shigella sonnei in addition to common three ones. Among the plant extracts of Carica papaya, Eucalyptus camaldulensis, Osmium basilicum, Grevillea robusta, Eucalyptus globulus, Pongamia pinnata, Mentha longifolia, and Melia azedarach, the G. robusta > E. camaldulensis > O. basilicum were found to have growth inhibitory effects with increasing concentrations from 100 to 2000 µg/mL. The biodiversity of the bacterial fauna is important for the biological control of termites. Leaf extracts of these medicinal plants can be used to control termite infestation in an environment-friendly manner to save huge economic loss.


Asunto(s)
Isópteros , Animales , Isópteros/microbiología , Bacterias/genética , Extractos Vegetales/farmacología , Biodiversidad
19.
Physiol Plant ; 176(2): e14256, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38531421

RESUMEN

The breeding of low phytic acid (LPA) crops is widely considered an effective strategy to improve crop nutrition, but the LPA crops usually have inferior seed germination performance. To clarify the reason for the suboptimal seed performance of LPA rice, this study investigated the impact of reduced seed phytic acid (InsP6) content in rice ins(3)P synthase1 (EC 5.5.1.4, RINO1), one of the key targets for engineering LPA rice, knockouton cellular differentiation in seed embryos and its relation to myo-inositol metabolism and auxin signalling during embryogenesis. The results indicated that the homozygotes of RINO1 knockout could initiate differentiation at the early stage of embryogenesis but failed to form normal differentiation of plumule and radicle primordia. The loss of RINO1 function disrupted vesicle trafficking and auxin signalling due to the significantly lowered phosphatidylinositides (PIs) concentration in seed embryos, thereby leading to the defects of seed embryos without the recognizable differentiation of shoot apex meristem (SAM) and radicle apex meristem (RAM) for the homozygotes of RINO1 knockout. The abnormal embryo phenotype of RINO1 homozygotes was partially rescued by exogenous spraying of inositol and indole-3-acetic acid (IAA) in rice panicle. Thus, RINO1 is crucial for both seed InsP6 biosynthesis and embryonic development. The lower phosphatidylinositol (4,5)-bisphosphate (PI (4,5) P2) concentration and the disorder auxin distribution induced by insufficient inositol supply in seed embryos were among the regulatory switch steps leading to aberrant embryogenesis and failure of seed germination in RINO1 knockout.


Asunto(s)
Inositol , Oryza , Inositol/metabolismo , Ácido Fítico/metabolismo , Oryza/genética , Semillas , Ácidos Indolacéticos/metabolismo
20.
Luminescence ; 39(3): e4724, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38523053

RESUMEN

For white light-rendering research activities, interpretation by using colored emitting materials is an alternative approach. But there are issues in designing the white color emitting materials. Particularly, differences in thermal and decay properties of discrete red, green, and blue emitting materials led to the quest for the search of a single-phased material, able to emit primary colors for white light generation. The current study is an effort to design a simple, single-phase, and cost-effective material with the tunable emission of primary colors by a series of Mg1-xBaxAl2O4:Mn2+ nanopowders. Doping of manganese ion (Mn2+) in the presence of the larger barium cation (Ba2+) at tetrahedral-sites of the spinel magnesium aluminate (MgAl2O4) structure led to the creation of antisite defects. Doped samples were found to have lower bandgaps compared with MgAl2O4, and hybridization of 3d-orbitals of Mn2+ with O(2p), Mg(2s)/Al(2s3p) was found to be responsible for narrowing the bandgap. The distribution of cations at various sites at random results in a variety of electronic transitions between the valance band and oxygen vacancies as well as electron traps produced the antisite defects. The suggested compositions might be used in white light applications since they have three emission bands with centers at 516 nm (green), 464 nm (blue) and 622 nm (red) at an excitation wavelength of 380 nm. A detailed discussion to analyze the effects of the larger cationic radius of Ba2+ on the lattice strain, unit cell parameters, and cell volumes using X-ray diffraction analysis is presented.


Asunto(s)
Óxido de Aluminio , Óxido de Magnesio , Cristalografía por Rayos X , Electrónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...