Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Gastroenterol Hepatol Bed Bench ; 17(1): 74-86, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737927

RESUMEN

Aim: Due to the capabilities of the mobile application in the self-care of patients, the present study was conducted to design and evaluate a mobile-based self-care application for patients with liver cirrhosis. Background: Liver cirrhosis is a progressive and chronic disease that, if left untreated, leads to liver cancer and, finally, the death of the patient. Methods: This study was conducted in six phases, including determining and confirming the validity of the minimum data set and capabilities for the application, designing a conceptual and logical model and determining the technical capabilities, designing the application, evaluating the prototype usability in a laboratory environment by technical experts, evaluation of the application usability in a real environment by 30 patients with QUIS (Questionnaire of User Interface Satisfaction) questionnaire. Results: The designed application has capabilities such as calculating the patient's MELD score (Model for End-Stage Liver Disease), medication reminder, location in emergency, and conversation with the physician. The results showed that the patients evaluated the application with a score of 7.94 (out of 9 points) at a good level. Conclusion: The self-care application can help patients with liver cirrhosis and their families access the necessary information related to the special care of the patient at any time and place; it also helps better manage the patient's life, improve the quality of life, and monitor the patient. These applications can effectively manage chronic diseases by reducing the burden of referrals and costs.

2.
Pathol Res Pract ; 253: 155012, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38071887

RESUMEN

Pancreatic Ductal Adenocarcinoma (PDAC) ranks among the most prevalent gastrointestinal malignancies, with risk factors including smoking, alcohol abuse, diabetes mellitus, obesity, age, family history, and genetic predisposition. Extensive research has focused on unraveling biomarkers and molecular intricacies associated with PDAC. Leveraging data from the Gene Expression Omnibus microarray and single-cell RNA sequencing datasets, our study identified ITGB4 and C19orf33 as potentially differentially expressed genes in PDAC samples when contrasted with non-malignant tissues. Notably, these genes exhibited a strong correlative expression pattern, primarily within ductal cells. Gene Expression Profiling Interactive Analysis corroborated our findings, further confirming the correlation between ITGB4 and C19orf33. Additionally, we conducted experiments involving two pivotal PDAC-related cell lines, MIA PaCa-2 and PANC-1, treated with oxaliplatin and 5-Fluorouracil. We also assessed the expression of these candidate genes in PDAC samples in comparison to adjacent normal tissues. Our findings revealed that C19orf33 is upregulated in PDAC samples, and treatment of PDAC cells with chemotherapeutic agents led to a correlated decrease in the expression of both ITGB4 and C19orf33. These co-expressed and correlated genes are implicated in relevant signaling pathways, suggesting shared biological activities that may contribute to the promotion of metastasis within malignant ductal cells. This study identifies ITGB4 and C19orf33 as key genes potentially shedding light on the molecular mechanisms driving tumorigenesis and metastasis in PDAC. These genes hold promise as potential diagnostic and therapeutic targets, offering valuable insights into the management of this challenging disease.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Regulación Neoplásica de la Expresión Génica , Integrina beta4/genética , Integrina beta4/metabolismo
3.
Adv Pharm Bull ; 13(3): 551-562, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37646068

RESUMEN

Purpose: CD44 plays a pivotal role through tumorigenesis by regulating cancer cell metastasis, stemness, and chemosensitivity and is considered a promising therapeutic target for human cancers, including colorectal cancer (CRC). Therefore, the present research aimed to examine the simultaneous therapeutic effect of CD44 silencing and 5-fluorouracil (5-FU) on in vitro tumorigenesis of CRC cells. Methods: CD44 expression was initially evaluated in TCGA datasets and CRC tissues. Furthermore, functional analysis was performed on HT-29 CRC cells overexpressing CD44. The cells were transfected with CD44 siRNA and then treated with 5-FU. Consequently, to explore the combination therapy effect on cell viability, migration, apoptosis, and chromatin fragmentation, we performed MTT assay, scratch assay, Annexin V/PI staining and DAPI staining assays, respectively. The spheroid and colony formation assays were further employed to investigate stemness features. The gene expression at protein and mRNA levels were explored using western blotting and qPCR. Results: Our findings illustrated that CD44 was significantly overexpressed in CRC tissues compared to normal samples. The suppression of CD44 considerably promoted the chemosensitivity of HT-29 cells to 5-FU by apoptosis induction. Also, the combination therapy led to overexpression of apoptotic genes, including P53, caspase-3, and caspase-9, as well as downregulation of AKT1 expression. Furthermore, CD44 suppression, separately or combined with 5-FU, hindered stemness properties in HT-29 cells via downregulation of Sox2 and Nanog expression. Besides, the combination therapy remarkably downregulated MMPs and suppressed CRC cell migration. Conclusion: Considering its involvement in chemosensitivity to 5-FU, CD44 could be suggested as a potential target for improving the efficiency of CRC chemotherapy.

4.
Ther Adv Chronic Dis ; 14: 20406223231153572, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035097

RESUMEN

Auto-immune diseases are a form of chronic disorders in which the immune system destroys the body's cells due to a loss of tolerance to self-antigens. Systemic lupus erythematosus (SLE), identified by the production of autoantibodies in different body parts, is one of the most well-known examples of these diseases. Although the etiology of SLE is unclear, the disease's progression may be affected by genetic and environmental factors. As studies in twins provide adequate evidence for genetic involvement in the SLE, other phenomena such as metallization, histone modifications, and alterations in the expression of noncoding RNAs (ncRNAs) also indicate the involvement of epigenetic factors in this disease. Among all the epigenetic alterations, ncRNAs appear to have the most crucial contribution to the pathogenesis of SLE. The ncRNAs' length and size are divided into three main classes: micro RNAs, long noncoding RNAs (LncRNA), and circular RNAs (circRNAs). Accumulating evidence suggests that dysregulations in these ncRNAs contributed to the pathogenesis of SLE. Hence, clarifying the function of these groups of ncRNAs in the pathophysiology of SLE provides a deeper understanding of the disease. It also opens up new opportunities to develop targeted therapies for this disease.

5.
Front Immunol ; 13: 938063, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967381

RESUMEN

As a disease with the highest disease-associated burden worldwide, cancer has been the main subject of a considerable proportion of medical research in recent years, intending to find more effective therapeutic approaches with fewer side effects. Combining conventional methods with newer biologically based treatments such as immunotherapy can be a promising approach to treating different tumors. The concept of "cancer immunoediting" that occurs in the field of the tumor microenvironment (TME) is the aspect of cancer therapy that has not been at the center of attention. One group of the role players of the so-called immunoediting process are the immune checkpoint molecules that exert either co-stimulatory or co-inhibitory effects in the anti-tumor immunity of the host. It involves alterations in a wide variety of immunologic pathways. Recent studies have proven that conventional cancer therapies, such as chemotherapy, radiotherapy, or a combination of them, i.e., chemoradiotherapy, alter the "immune compartment" of the TME. The mentioned changes encompass a wide range of variations, including the changes in the density and immunologic type of the tumor-infiltrating lymphocytes (TILs) and the alterations in the expression patterns of the different immune checkpoints. These rearrangements can have either anti-tumor immunity empowering or immune attenuating sequels. Thus, recognizing the consequences of various chemo(radio)therapeutic regimens in the TME seems to be of great significance in the evolution of therapeutic approaches. Therefore, the present review intends to summarize how chemo(radio)therapy affects the TME and specifically some of the most important, well-known immune checkpoints' expressions according to the recent studies in this field.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Inmunoterapia/métodos , Neoplasias/terapia
6.
Life Sci ; 297: 120466, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35271882

RESUMEN

Dendritic cells (DCs) can present tumoral antigens to T-cells and stimulate T-cell-mediated anti-tumoral immune responses. In addition to uptaking, processing, and presenting tumoral antigens to T-cells, co-stimulatory signals have to be established between DCs with T-cells to develop anti-tumoral immune responses. However, most of the tumor-infiltrated immune cells are immunosuppressive in the tumor microenvironment (TME), paving the way for immune evasion of tumor cells. This immunosuppressive TME has also been implicated in suppressing the DC-mediated anti-tumoral immune responses, as well. Various factors, i.e., immunoregulatory cells, metabolic factors, tumor-derived immunosuppressive factors, and inhibitory immune checkpoint molecules, have been implicated in developing the immunosuppressive TME. Herein, we aimed to review the biology of DCs in developing T-cell-mediated anti-tumoral immune responses, the significance of immunoregulatory cells in the TME, metabolic barriers contributing to DCs dysfunction in the TME, tumor-derived immunosuppressive factors, and inhibitory immune checkpoint molecules in DC-based cell therapy outcomes. With reviewing the ongoing clinical trials, we also proposed a novel therapeutic strategy to increase the efficacy of DC-based cell therapy. Indeed, the combination of DC-based cell therapy with monoclonal antibodies against novel immune checkpoint molecules can be a promising strategy to increase the response rate of patients with cancers.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Células Dendríticas , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia , Neoplasias/metabolismo , Microambiente Tumoral
7.
Biomed Pharmacother ; 148: 112725, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35183994

RESUMEN

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS). Dysregulated immune responses have been implicated in MS development. Growing evidence has indicated that inhibitory immune checkpoint molecules can substantially regulate immune responses and maintain immune tolerance. V-domain Ig suppressor of T cell activation (VISTA) is a novel inhibitory immune checkpoint molecule that can suppress immune responses; however, its expression pattern in the peripheral blood mononuclear cells (PBMCs) of relapsing-remitting multiple sclerosis (RRMS) has not thoroughly been studied. Herein, we evaluated Vsir expression in PBMCs of RRMS patients and characterized the expression pattern of the Vsir in the PBMCs of MS patients. Besides, we investigated the effect of fingolimod, IFNß-1α, glatiramer acetate (GA), and dimethyl fumarate (DMF) on Vsir expression in PBMCs of RRMS patients. Our results have shown that Vsir expression is significantly downregulated in the PBMCs of patients with RRMS. Besides, the single-cell RNA sequencing results have demonstrated that Vsir expression is downregulated in classical monocyte, intermediate monocytes, non-classical monocytes, myeloid DCs (mDC), Plasmacytoid dendritic cells (pDCs), and naive B-cells of PBMCs of MS patients compared to the control. In addition, DMF, IFNß-1α, and GA have significantly upregulated Vsir expression in the PBMCs of RRMS patients. Collectively, the current study has shed light on Vsir expression in the PBMCs of MS patients; however, further studies are needed to elucidate the significance of VISTA in the mentioned immune cells.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Dimetilfumarato/farmacología , Humanos , Leucocitos Mononucleares/metabolismo , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/genética , Análisis de Secuencia de ARN
8.
Gene ; 821: 146333, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35182674

RESUMEN

Liver cancer is one of the most lethal cancers having worldwide prevalence. Despite significant progress in cancer therapy, liver cancer-induced mortality is very high. Nanog, as an essential transcription factor modulating cellular multipotency, causes tumor progression, drug resistance, and preserves stemness properties in various tumors such as liver cancer. Thus, this research was conducted to evaluate the impact of combination therapy of Nanog siRNA/cisplatin on the sensitivity of liver cancer cells to this drug. HepG2 cells were transfected with Nanog siRNA and treated with cisplatin, individually and in combination. Then, it was observed that in transfected HepG2 cells, Nanog expression was significantly reduced at mRNA level and also these cells were sensitized to cisplatin. In addition, to assess the impact of Nanog siRNA and cisplatin individually and in combination on cells' viability, migration capacity, apoptosis, and cell cycle progression, the MTT, wound healing, colony formation assay, Annexin V/PI staining, and flow cytometry assays were applied on HepG2 cells, respectively. Also, the quantitive Real-Time PCR was used to check the expression of stemness-associated genes (CD44, CD133, and Sox2), and apoptosis-related genes (caspase-3, 8, 9, BAX and Bcl2) after combination therapy. It is indicated that the combination of Nanog siRNA and cisplatin significantly reduced proliferation, migration, and colony formation ability, as well as increased apoptosis rate, and cell cycle arrest. Also, it is found that the combination of Nanog siRNA and cisplatin down-regulated the expression of stemness-associated genes and up-regulated apoptosis-related genes in HepG2 cells. Hence, it can be suggested that Nanog inhibition in combination with cisplatin is a potential therapeutic strategy for developing new therapeutic approaches for liver cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Cisplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Hepáticas/genética , Proteína Homeótica Nanog/genética , ARN Interferente Pequeño/farmacología , Antígeno AC133/genética , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Células Hep G2 , Humanos , Receptores de Hialuranos/genética , Neoplasias Hepáticas/tratamiento farmacológico , Proteína Homeótica Nanog/antagonistas & inhibidores , Células Madre Neoplásicas/química , Células Madre Neoplásicas/efectos de los fármacos , Factores de Transcripción SOXB1/genética
9.
Biomed Pharmacother ; 146: 112588, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35062062

RESUMEN

Tumor-associated macrophages (TAMs) are among the abundant cell populations of the tumor microenvironment (TME), which have pivotal roles in tumor development, chemoresistance, immune evasion, and metastasis. Growing evidence indicates that TAMs and the cross-talk between TAMs and tumoral endothelial cells can substantially contribute to tumor angiogenesis, which is considered a vital process for cancer development. Besides, tumoral endothelial cells can regulate the leukocyte infiltration to the TME in solid cancers and contribute to immune evasion. Therefore, targeting the immunosuppressive TAMs and the cross-talk between them can be a promising strategy for improving anti-tumoral immune responses. This review aims to summarize the biology of TAMs, their recently identified roles in tumor development/angiogenesis, and recent advances in macrophage-based cancer immunotherapy approaches for treating cancers.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/inmunología , Microambiente Tumoral , Macrófagos Asociados a Tumores/metabolismo , Antineoplásicos Inmunológicos/uso terapéutico , Células Endoteliales , Humanos , Neoplasias/tratamiento farmacológico , Receptor Cross-Talk , Macrófagos Asociados a Tumores/patología
10.
Immunol Invest ; 51(2): 246-265, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32981399

RESUMEN

The outbreak of coronavirus disease 2019 (COVID-19) has posed a serious threat to public health. There is an urgent need for discovery methods for the prevention and treatment of COVID-19 infection. Understanding immunogenicity together with immune responses are expected to provide further information about this virus. We hope that this narrative review article may create new insights for researchers to take great strides toward designing vaccines and novel therapies in the near future. The functional properties of the immune system in COVID-19 infection is not exactly clarified yet. This is compounded by the many gaps in our understanding of the SARS-CoV-2 immunogenicity properties. Possible immune responses according to current literature are discussed as the first line of defense and acquired immunity. Here, we focus on proposed modern preventive immunotherapy methods in COVID-19 infection.


Asunto(s)
COVID-19 , Inmunidad Adaptativa , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2
11.
Biomed Pharmacother ; 146: 112516, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34906767

RESUMEN

The growth and development of cancer are directly correlated to the suppression of the immune system. A major breakthrough in cancer immunotherapy depends on various mechanisms to detect immunosuppressive factors that inhibit anti-tumor immune responses. Immune checkpoints are expressed on many immune cells such as T-cells, regulatory B cells (Bregs), dendritic cells (DCs), natural killer cells (NKs), regulatory T (Tregs), M2-type macrophages, and myeloid-derived suppressor cells (MDSCs). Immune inhibitory molecules, including CTLA-4, TIM-3, TIGIT, PD-1, and LAG-3, normally inhibit immune responses via negatively regulating immune cell signaling pathways to prevent immune injury. However, the up-regulation of inhibitory immune checkpoints during tumor progression on immune cells suppresses anti-tumor immune responses and promotes immune escape in cancer. It has recently been indicated that cancer cells can up-regulate various pathways of the immune checkpoints. Therefore, targeting immune inhibitory molecules through antibodies or miRNAs is a promising therapeutic strategy and shows favorable results. Immune checkpoint inhibitors (ICIs) are introduced as a new immunotherapy strategy that enhance immune cell-induced antitumor responses in many patients. In this review, we highlighted the function of each immune checkpoint on different immune cells and therapeutic strategies aimed at using monoclonal antibodies and miRNAs against inhibitory receptors. We also discussed current challenges and future strategies for maximizing these FDA-approved immunosuppressants' effectiveness and clinical success in cancer treatment.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Inhibidores de Puntos de Control Inmunológico/farmacología , Proteínas de Punto de Control Inmunitario/metabolismo , MicroARNs/farmacología , Monitorización Inmunológica/métodos , Neoplasias/patología , Antineoplásicos Inmunológicos/uso terapéutico , Regulación hacia Abajo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , MicroARNs/uso terapéutico , Neoplasias/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Escape del Tumor/inmunología , Regulación hacia Arriba
12.
Cell Mol Neurobiol ; 42(8): 2849-2861, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34661780

RESUMEN

Alzheimer's disease (AD), the most frequently diagnosed dementia, is a senile neurodegenerative disorder characterized by amnesia and cognitive dysfunction. Unfortunately, there are still no successful strategies to prevent AD progression. Thus, the vast majority of research focuses on recognizing risk factors for developing and progressing this disease. Human spirochetes, fungi, Borrelia burgdorferi, Chlamydophila pneumoniae, Helicobacter pylori, and human herpes simplex virus type 1 (HSV-1) have all been implicated in the development and progression of AD. Identifying microRNAs (miRs) encoded by DNA viruses has indicated that viruses can be evolved to exploit RNA silencing to regulate host and viral genes. Similar to host miR, v-miR can interact with the 3' untranslated region (UTR) of the target mRNA to regulate gene expression. Although HSV-1 can also encode various miRs, their significance in the development and progression of AD is still unclear. In the present study, utilizing the bioinformatics approach (R software and related packages), we analyzed the differentially expressed genes (DEGs) in AD samples (grey matter) of GSE37263 dataset obtained from the NCBI Gene Expression Omnibus (GEO). Then, the sequences of HSV-1-encoded-miRs were retrieved from miRbase, and their targets were predicted by miRDB. Afterward, the common genes between downregulated DEGs in AD and targets of HSV-1-encoded miRs were identified to shed new light on the relationship between HSV-1 infection and AD development. Our results have indicated that HSV-1-encoded-miRs can target the downregulated DEGs in AD, and these aberrant interactions can offer valuable diagnostic/prognostic biomarkers for affected patients.


Asunto(s)
Enfermedad de Alzheimer , Herpes Simple , Herpesvirus Humano 1 , MicroARNs , Regiones no Traducidas 3' , Enfermedad de Alzheimer/genética , Biomarcadores/metabolismo , Herpes Simple/genética , Herpesvirus Humano 1/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo
13.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34638729

RESUMEN

Preclinical studies have indicated that T-cell immunoglobulin and ITIM domain (TIGIT) can substantially attenuate anti-tumoral immune responses. Although multiple clinical studies have evaluated the significance of TIGIT in patients with solid cancers, their results remain inconclusive. Thus, we conducted the current systematic review and meta-analysis based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) to determine its significance in patients with solid cancers. We systematically searched the Web of Science, Embase, PubMed, and Scopus databases to obtain peer-reviewed studies published before September 20, 2020. Our results have shown that increased TIGIT expression has been significantly associated with inferior overall survival (OS) (HR = 1.42, 95% CI: 1.11-1.82, and p-value = 0.01). Besides, the level of tumor-infiltrating TIGIT+CD8+ T-cells have been remarkably associated inferior OS and relapse-free survival (RFS) of affected patients (HR = 2.17, 95% CI: 1.43-3.29, and p-value < 0.001, and HR = 1.89, 95% CI: 1.36-2.63, and p-value < 0.001, respectively). Also, there is a strong positive association between TIGIT expression with programmed cell death-1 (PD-1) expression in these patients (OR = 1.71, 95% CI: 1.10-2.68, and p-value = 0.02). In summary, increased TIGIT expression and increased infiltration of TIGIT+CD8+ T-cells can substantially worsen the prognosis of patients with solid cancers. Besides, concerning the observed strong association between TIGIT and PD-1, ongoing clinical trials, and promising preclinical results, PD-1/TIGIT dual blockade can potentially help overcome the immune-resistance state seen following monotherapy with a single immune checkpoint inhibitor in patients with solid cancers.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Proteínas de Neoplasias/inmunología , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Receptores Inmunológicos/inmunología , Escape del Tumor , Linfocitos T CD8-positivos/patología , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Inmunoterapia , Linfocitos Infiltrantes de Tumor/patología , Neoplasias/patología , Neoplasias/terapia
14.
Int J Mol Sci ; 22(19)2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-34639059

RESUMEN

Gastric cancer (GC), with a heterogeneous nature, is the third leading cause of death worldwide. Over the past few decades, stable reductions in the incidence of GC have been observed. However, due to the poor response to common treatments and late diagnosis, this cancer is still considered one of the lethal cancers. Emerging methods such as immunotherapy with immune checkpoint inhibitors (ICIs) have transformed the landscape of treatment for GC patients. There are presently eleven known members of the B7 family as immune checkpoint molecules: B7-1 (CD80), B7-2 (CD86), B7-H1 (PD-L1, CD274), B7-DC (PDCD1LG2, PD-L2, CD273), B7-H2 (B7RP1, ICOS-L, CD275), B7-H3 (CD276), B7-H4 (B7x, B7S1, Vtcn1), B7-H5 (VISTA, Gi24, DD1α, Dies1 SISP1), B7-H6 (NCR3LG1), B7-H7 (HHLA2), and Ig-like domain-containing receptor 2 (ILDR2). Interaction of the B7 family of immune-regulatory ligands with the corresponding receptors resulted in the induction and inhibition of T cell responses by sending co-stimulatory and co-inhibitory signals, respectively. Manipulation of the signals provided by the B7 family has significant potential in the management of GC.


Asunto(s)
Antígenos B7/inmunología , Inmunomodulación , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/metabolismo , Animales , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Antígenos B7/antagonistas & inhibidores , Antígenos B7/química , Antígenos B7/genética , Biomarcadores de Tumor , Proteínas Portadoras , Ensayos Clínicos como Asunto , Regulación de la Expresión Génica , Humanos , Inmunomodulación/efectos de los fármacos , Inmunomodulación/genética , Terapia Molecular Dirigida , Familia de Multigenes , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Resultado del Tratamiento
15.
Front Immunol ; 12: 734956, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603316

RESUMEN

Based on preclinical findings, programmed death-ligand 1 (PD-L1) can substantially attenuate CD8+ T-cell-mediated anti-tumoral immune responses. However, clinical studies have reported controversial results regarding the significance of the tumor-infiltrating CD8+ T-cells/PD-L1 axis on the clinical picture and the response rate of patients with high-grade glial tumors to anti-cancer therapies. Herein, we conducted a systematic review according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statements to clarify the clinical significance of the tumor-infiltrating CD8+ T-cells/PD-L1 axis and elucidate the impact of this axis on the response rate of affected patients to anti-cancer therapies. Indeed, a better understanding of the impact of this axis on the response rate of affected patients to anti-cancer therapies can provide valuable insights to address the futile response rate of immune checkpoint inhibitors in patients with high-grade glial tumors. For this purpose, we systematically searched Scopus, Web of Science, Embase, and PubMed to obtain peer-reviewed studies published before 1 January 2021. We have observed that PD-L1 overexpression can be associated with the inferior prognosis of glioblastoma patients who have not been exposed to chemo-radiotherapy. Besides, exposure to anti-cancer therapies, e.g., chemo-radiotherapy, can up-regulate inhibitory immune checkpoint molecules in tumor-infiltrating CD8+ T-cells. Therefore, unlike unexposed patients, increased tumor-infiltrating CD8+ T-cells in anti-cancer therapy-exposed tumoral tissues can be associated with the inferior prognosis of affected patients. Because various inhibitory immune checkpoints can regulate anti-tumoral immune responses, the single-cell sequencing of the cells residing in the tumor microenvironment can provide valuable insights into the expression patterns of inhibitory immune checkpoints in the tumor micromovement. Thus, administrating immune checkpoint inhibitors based on the data from the single-cell sequencing of these cells can increase patients' response rates, decrease the risk of immune-related adverse events development, prevent immune-resistance development, and reduce the risk of tumor recurrence.


Asunto(s)
Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/inmunología , Linfocitos T CD8-positivos/inmunología , Glioma/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Medicina de Precisión , Escape del Tumor , Microambiente Tumoral/inmunología , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linfocitos T CD8-positivos/metabolismo , Toma de Decisiones Clínicas , Resistencia a Antineoplásicos , Genómica , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Linfocitos Infiltrantes de Tumor/metabolismo , Clasificación del Tumor , Transducción de Señal , Análisis de la Célula Individual , Microambiente Tumoral/genética
16.
Front Oncol ; 11: 722833, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34540691

RESUMEN

BACKGROUND: Cancer stem cells have been implicated in tumor relapse, tumor invasion, and cancer therapy resistance in high-grade gliomas; thus, characterizing cancer stem cell-related markers can help determine the prognosis of affected patients. Preclinical studies have reported that CD133 is implicated in tumor recurrence and cancer therapy resistance in high-grade gliomas; however, clinical studies have reported inconclusive results regarding its prognostic value in patients with high-grade gliomas. METHODS: We systematically searched the PubMed, Scopus, Web of Science, and Embase databases to obtain peer-reviewed studies published before March 10, 2021. Then, we conducted the current systematic review and meta-analysis based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statements. By applying the random-effect model, the effect size of studies investigating the progression-free survival (PFS), time to local recurrence (TTL), and time to distant recurrence (TTD) were calculated using RevMan version 5.4. The heterogeneity between the included studies was studied by the I2 index and Cochran's Q test. Egger test was performed on funnel plots to investigate the potential asymmetry and publication bias among the included studies using CMA version 2. RESULTS: With the 10% cut-off, CD133 protein overexpression is associated with the inferior PFS of patients with high-grade gliomas. Increased CD133 protein expression is associated with sooner distant tumor recurrence on MRI in glioblastoma patients and patients with high-grade gliomas and improved TTL on MRI in glioblastoma patients. CONCLUSION: Based on the current evidence from 1086 patients with high-grade gliomas, CD133 overexpression is a valuable marker to predict tumor relapse and tumor recurrence patterns in patients with high-grade gliomas.

17.
Biomedicines ; 9(9)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34572263

RESUMEN

Immunotherapy is a new pillar of cancer therapy that provides novel opportunities to treat solid tumors. In this context, the development of new drugs targeting immune checkpoints is considered a promising approach in colorectal cancer (CRC) treatment because it can be induce specific and durable anti-cancer effects. Despite many advances in the immunotherapy of CRC, there are still limitations and obstacles to successful treatment. The immunosuppressive function of the tumor microenvironment (TME) is one of the causes of poor response to treatment in CRC patients. For this reason, checkpoint-blocking antibodies have shown promising outcomes in CRC patients by blocking inhibitory immune checkpoints and enhancing immune responses against tumors. This review summarizes recent advances in immune checkpoint inhibitors (ICIs), such as CTLA-4, PD-1, PD-L1, LAG-3, and TIM-3 in CRC, and it discusses various therapeutic strategies with ICIs, including the double blockade of ICIs, combination therapy of ICIs with other immunotherapies, and conventional treatments. This review also delineates a new hopeful path in the combination of anti-PD-1/anti-PD-L1 with other ICIs such as anti-CTLA-4, anti-LAG-3, and anti-TIM-3 for CRC treatment.

18.
Biomed Pharmacother ; 143: 112213, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34560556

RESUMEN

Tumoral programmed cell death ligand 1 (PD-L1) has been implicated in the immune evasion and development of colorectal cancer. Although monoclonal immune checkpoint inhibitors can exclusively improve the prognosis of patients with microsatellite instability-high (MSI-H) and tumor mutational burden-high (TMB-H) colorectal cancer, specific tumor-suppressive microRNAs (miRs) can regulate multiple oncogenic pathways and inhibit the de novo expression of oncoproteins, like PD-L1, both in microsatellite stable (MSS) and MSI-H colorectal cancer cells. This scoping review aimed to discuss the currently available evidence regarding the therapeutic potentiality of PD-L1-inhibiting miRs for colorectal cancer. For this purpose, the Web of Science, Scopus, and PubMed databases were systematically searched to obtain peer-reviewed studies published before 17 March 2021. We have found that miR-191-5p, miR-382-3p, miR-148a-3p, miR-93-5p, miR-200a-3p, miR-200c-3p, miR-138-5p, miR-140-3p, and miR-15b-5p can inhibit tumoral PD-L1 in colorectal cancer cells. Besides inhibiting PD-L1, miR-140-3p, miR-382-3p, miR-148a-3p, miR-93-5p, miR-200a-3p, miR-200c-3p, miR-138-5p, and miR-15b-5p can substantially reduce tumor migration, inhibit tumor development, stimulate anti-tumoral immune responses, decrease tumor viability, and enhance the chemosensitivity of colorectal cancer cells regardless of the microsatellite state. Concerning the specific, effective, and safe delivery of these miRs, the single-cell sequencing-guided biocompatible-based delivery of these miRs can increase the specificity of miR delivery, decrease the toxicity of traditional nanoparticles, transform the immunosuppressive tumor microenvironment into the proinflammatory one, suppress tumor development, decrease tumor migration, and enhance the chemosensitivity of tumoral cells regardless of the microsatellite state.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Materiales Biocompatibles/administración & dosificación , Neoplasias Colorrectales/terapia , Técnicas de Transferencia de Gen , Terapia Genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , MicroARNs/administración & dosificación , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , MicroARNs/genética , MicroARNs/metabolismo , Nanomedicina , Nanopartículas , Transducción de Señal
19.
Front Immunol ; 12: 709173, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504491

RESUMEN

Background: Although the exact pathophysiology of MS has not been identified, mitochondrial stress can be one of the culprits in MS development. Herein, we have applied microarray analysis, single-cell sequencing analysis, and ex vivo study to elucidate the role of mitochondrial stress in PBMCs of MS patients. Methods: For this purpose, we analyzed the GSE21942 and GSE138266 datasets to identify the DEGs and hub genes in the PBMCS of MS patients and describe the expression of shared genes in the different immune cells. The GO pathway analysis of DEGs and turquoise module genes were conducted to shed light on their biological significance. To validate the obtained results, the gene expression of HBD, as the most remarkable DEG in the PBMCS of affected patients, was measured in the PBMCS of healthy donors, treatment-naïve MS patients, and MS patients treated with GA, fingolimod, DMF, and IFNß-1α. Results: Based on WGCNA and DEGs analysis, HBD, HBM, SLC4A1, LILRA5, SLC25A37, SELENBP1, ALYREF, SNRNP40, and HINT3 are the identified common genes in the PMBCS. Using single-cell sequencing analysis on PBMCS, we have characterized various cell populations in MS and illustrated the common gene expression on the different immune cells. Furthermore, GO pathway analysis of DEGs, and turquoise module genes have indicated that these genes are involved in immune responses, myeloid cell activation, leukocyte activation, oxygen carrier activity, and replication fork processing bicarbonate transport pathways. Our ex vivo investigation has shown that HBD expression in the treatment-naïve RRMS patients is significantly increased compared to healthy donors. Of interest, immunomodulatory therapies with fingolimod, DMF, and IFNß-1α have significantly decreased HBD expression. Conclusion: HBD is one of the remarkably up-regulated genes in the PBMCS of MS patients. HBD is substantially up-regulated in treatment-naïve MS patients, and immunomodulatory therapies with fingolimod, DMF, and IFNß-1α can remarkably down-regulate HBD expression. Based on the currently available evidence, the cytoprotective nature of HBD against oxidative stress can be the underlying reason for HBD up-regulation in MS. Nevertheless, further investigations are needed to shed light on the molecular mechanisms of HBD in the oxidative stress of MS patients.


Asunto(s)
Subunidades de Hemoglobina/fisiología , Mitocondrias/metabolismo , Esclerosis Múltiple/inmunología , Adulto , Femenino , Subunidades de Hemoglobina/genética , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/etiología , Esclerosis Múltiple/metabolismo , Mapas de Interacción de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Análisis de la Célula Individual , Transcriptoma
20.
Front Oncol ; 11: 689839, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434894

RESUMEN

As a unique population of tumor bulk, cancer stem cells have been implicated in tumor relapse and chemoresistance in triple-negative breast cancer (TNBC). Therefore, understanding the phenotype of cancer stem cells can pave the way for introducing novel molecular targeted therapies for treating TNBC patients. Preclinical studies have identified CD44+CD24-/low as a cancer stem cell phenotype; however, clinical studies have reported seemingly controversial results regarding the prognostic values of CD44 and CD44+CD24-/low phenotype in TNBC patients. To critically review the clinicopathological significance and prognostic values of CD44 and CD44+CD24-/low phenotype in TNBC patients, the Scopus, Embase, PubMed, and Web of Science databases were systematically searched to obtain the relevant records published before 20 October 2020. Based on nine included studies, CD44 and CD44+CD24-/low phenotype are associated with inferior prognosis in TNBC patients. Moreover, these cancer stem cell markers have been associated with advanced tumor stage, tumor size, higher tumor grade, tumor metastasis, and lymphatic involvement in TNBC patients. Our evidence has also indicated that, unlike the treatment-naïve TNBC patients, the tumoral cells of chemoradiotherapy-treated TNBC patients can upregulate the CD44+CD24-/low phenotype and establish an inverse association with androgen receptor (AR), leading to the inferior prognosis of affected patients. In summary, CD44 and CD44+CD24-/low phenotype can be utilized to determine TNBC patients' prognosis in the pathology department as a routine practice, and targeting these phenotypes can substantially improve the prognosis of TNBC patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...