Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 9(2): 781-788, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38244038

RESUMEN

The primary treatment for glaucoma, the most common cause of intermediate vision impairment, involves administering ocular hypotensive drugs in the form of topical eye drops. Observing real-time changes in the drugs that pass through the cornea and reach the anterior chamber of the eye is crucial for improving and developing safe, reliable, and effective medical treatments. Traditional methods for measuring temporal changes in drug concentrations in the aqueous humor employ separation analyzers such as LC-MS/MS. However, this technique requires multiple measurements on the eyes of various test subjects to track changes over time with a high temporal resolution. To address this issue, we have developed a measurement method that employs boron-doped diamond (BDD) microelectrodes to monitor real-time drug concentrations in the anterior chamber of the eye. First, we confirmed the electrochemical reactivity of 13 antiglaucoma drugs in a phosphate buffer solution with a pH of 7.4. Next, we optimized the method for continuous measurement of timolol maleate (TIM), a sympathetic beta-receptor antagonist, and generated calibration curves for each BDD microelectrode using aqueous humor collected from enucleated porcine eyes. We successfully demonstrated the continuous ex vivo monitoring of TIM concentrations in the anterior chambers of these enucleated porcine eyes. The results indicate that changes in intracameral TIM concentrations can be monitored through electrochemical measurements using BDD microelectrodes. This technique holds promise for future advancements in optimizing glaucoma treatment and drug administration strategies.


Asunto(s)
Agentes Antiglaucoma , Glaucoma , Porcinos , Animales , Humanos , Boro , Microelectrodos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Timolol , Glaucoma/tratamiento farmacológico , Diamante
2.
ACS Sens ; 8(11): 4245-4252, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37880948

RESUMEN

Efficient detection of sodium nitrite in human urine could be used to diagnose urinary tract infections rapidly. Here, we demonstrate a fast and novel method for the selective detection of sodium nitrite in different human urine samples using electrolysis with a bare boron-doped diamond electrode. The measurement is performed without adding any other species, such as enzymes, and uses a simple electrochemical approach with an oxidation step followed by reduction. In the present study, we pay attention to the reduction potential range for the measurement, which is substantially different from many previous literature reports that focus on the oxidation reaction. The determination of added sodium nitrite based on cyclic voltammetry or differential pulse voltammetry is employed for two pooled urine samples and three individual urine matrices. From this, the linear response ranges for sodium nitrite detection are 0.5-10 mg/L (7.2-140 µmol/L) and 10-400 mg/L (140-5800 µmol/L). The results from these urine samples convert well to the calibration curve, with a limit of detection established as 0.82 mg/L (R2 = 0.9914), which is clinically relevant.


Asunto(s)
Boro , Infecciones Urinarias , Humanos , Nitrito de Sodio , Electrodos , Oxidación-Reducción , Infecciones Urinarias/diagnóstico
3.
Analyst ; 148(18): 4396-4405, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37551933

RESUMEN

Urinalysis is attracting interest in personal healthcare management as part of a general move to improve quality of life. Urine contains various metabolites and the protein level in urine is an indicator of kidney function. In this study, a novel electrochemical sensing system based on boron-doped diamond (BDD) electrodes was developed for the detection of protein concentrations in human urine. BDD electrodes have the advantages of a wide electrochemical potential window and low non-specific adsorption, making them ideal for simple, rapid, and compact devices for home detection of bio-relevant substances. Coomassie brilliant blue (CBB), a dye that selectively and strongly binds to urine proteins, was found to be a redox-active indicator to show a decrease in its redox currents in relation to the concentration of protein in urine samples. Our detailed studies of BDD electrodes showed their limit of detection to be 2.57 µg mL-1 and that they have a linear response that ranges from 0 to 400 µg mL-1 in urine samples. We also investigated the detection of urine protein in different urine samples. Our results agreed with those obtained using conventional colorimetric analysis. We believe this to be the first study of electrochemical detection of urine protein in urine samples on BDD electrodes, which is of great significance to be able to obtain results with electrical signals rapidly compared to conventional colorimetric analysis. This CBB-BDD technique has the potential to assist healthcare management in the form of a rapid daily diagnostic test to judge whether a more detailed examination is needed.


Asunto(s)
Boro , Calidad de Vida , Humanos , Boro/química , Urinálisis , Electrodos , Oxidación-Reducción
4.
Heliyon ; 9(5): e15963, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37234605

RESUMEN

On-site monitoring of plasma drug concentrations is required for effective therapies. Recently developed handy biosensors are not yet popular owing to insufficient evaluation of accuracy on clinical samples and the necessity of complicated costly fabrication processes. Here, we approached these bottlenecks via a strategy involving engineeringly unmodified boron-doped diamond (BDD), a sustainable electrochemical material. A sensing system based on a ∼1 cm2 BDD chip, when analysing rat plasma spiked with a molecular-targeting anticancer drug, pazopanib, detected clinically relevant concentrations. The response was stable in 60 sequential measurements on the same chip. In a clinical study, data obtained with a BDD chip were consistent with liquid chromatography-mass spectrometry results. Finally, the portable system with a palm-sized sensor containing the chip analysed ∼40 µL of whole blood from dosed rats within ∼10 min. This approach with the 'reusable' sensor may improve point-of-monitoring systems and personalised medicine while reducing medical costs.

5.
Front Pharmacol ; 12: 633505, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34012393

RESUMEN

Hearing loss affects >5% of the global population and therefore, has a great social and clinical impact. Sensorineural hearing loss, which can be caused by different factors, such as acoustic trauma, aging, and administration of certain classes of drugs, stems primarily from a dysfunction of the cochlea in the inner ear. Few therapeutic strategies against sensorineural hearing loss are available. To develop effective treatments for this disease, it is crucial to precisely determine the behavior of ototoxic and therapeutic agents in the microenvironment of the cochlea in live animals. Since the 1980s, a number of studies have addressed this issue by different methodologies. However, there is much less information on pharmacokinetics in the cochlea than that in other organs; the delay in ontological pharmacology is likely due to technical difficulties with accessing the cochlea, a tiny organ that is encased with a bony wall and has a fine and complicated internal structure. In this review, we not only summarize the observations and insights obtained in classic and recent studies on pharmacokinetics in the cochlea but also describe relevant analytical techniques, with their strengths, limitations, and prospects.

6.
Anal Chem ; 93(14): 5831-5838, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33783208

RESUMEN

Boron-doped diamond (BDD) is most often grown by chemical vapor deposition (CVD) in polycrystalline form, where the electrochemical response is averaged over the whole surface. Deconvoluting the impact of crystal orientation, surface termination, and boron-doped concentration on the electrochemical response is extremely challenging. To tackle this problem, we use CVD to grow isolated single-crystal microparticles of BDD with the crystal facets (100, square-shaped) and (111, triangle-shaped) exposed and combine with hopping mode scanning electrochemical cell microscopy (HM-SECCM) for electrochemical interrogation of the individual crystal faces (planar and nonplanar). Measurements are made on both hydrogen- (H-) and oxygen (O-)-terminated single-crystal facets with two different redox mediators, [Ru(NH3)6]3+/2+ and Fe(CN)64-/3-. Extraction of the half-wave potential from linear sweep and cyclic voltammetric experiments at all measurement (pixel) points shows unequivocally that electron transfer is faster at the H-terminated (111) surface than at the H-terminated (100) face, attributed to boron dopant differences. The most dramatic differences were seen for [Ru(NH3)6]3+/2+ when comparing the O-terminated (100) surface to the H-terminated (100) face. Removal of the H-surface conductivity layer and a potential-dependent density of states were thought to be responsible for the behavior observed. Finally, a bimodal distribution in the electrochemical activity on the as-grown H-terminated polycrystalline BDD electrode is attributed to the dominance of differently doped (100) and (111) facets in the material.

7.
Anal Chem ; 92(20): 13742-13749, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32786440

RESUMEN

Methylcobalamin, which is used for the clinical treatment of patients with neuropathy, can have an impact on the sensorineural components associated with the cochlea, and it is possible that the auditory threshold in a certain population of patients with deafness may be recovered. Nonetheless, it remains uncertain whether the action site of methylcobalamin is localized inside or outside the cochlea and which cellular or tissue element is targeted by the drug. In the present work, we developed a method to realize in vivo real-time simultaneous examination of the drug kinetics in two separate locations using boron-doped diamond microelectrodes. First, the analytical performance of methylcobalamin was studied and the measurement protocol was optimized in vitro. Then, the optimized protocol was applied to carry out real-time measurements inside the cochlea and the leg muscle in live guinea pigs while systemically administering methylcobalamin. The results showed that the methylcobalamin concentration in the cochlea was below the limit of detection for the microelectrodes or the drug did not reach the cochlea, whereas the compound clearly reached the leg muscle.


Asunto(s)
Técnicas Electroquímicas/métodos , Vitamina B 12/análogos & derivados , Animales , Boro/química , Cóclea/química , Cóclea/metabolismo , Diamante/química , Cobayas , Límite de Detección , Microelectrodos , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Vitamina B 12/análisis , Vitamina B 12/metabolismo
8.
Analyst ; 145(2): 544-549, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31764923

RESUMEN

Stable and continuous biosensing of electroactive species in vivo has been achieved by using boron-doped diamond (BDD) electrodes owing to their outstanding electrochemical properties. However, the present problem in biosensing using BDD electrodes is how to specifically measure/detect the target molecules, including electrochemically inactive species. A possible solution is to fabricate an electrochemical aptamer-based (E-AB) sensor using a BDD electrode. In a preliminary investigation, we found that DNA aptamers strongly adsorb on the BDD surface and the aptamer-adsorbed BDD apparently worked as an E-AB sensor. The present study reports the performance of the aptamer-adsorbed BDD electrode as an E-AB sensor. Doxorubicin (DOX), a widely used chemotherapeutic, was chosen as a target molecule. The sensor could be prepared by just dipping BDD in an aptamer solution for only 30 min, and the electrochemical signals were dependent on the DOX concentration. The adsorption of DNA was strong enough for continuous measurements and even a sonication treatment. Such behaviors were not observed when using gold and glassy carbon electrodes. In a kinetic measurement, distortion by a sluggish response was observed for both association and dissociation phases, indicating that the interaction between DOX and the aptamer involves several kinetic processes. By fitting to a Langmuir isotherm, a limit of detection of 49 nM and a maximum detectable concentration of 2.3 µM were obtained. Although the sensitivity was lower than those of the well-established E-AB sensors of gold, the values are within a drug's therapeutic range. Overall, the present work demonstrates that a DNA aptamer and a BDD electrode is an effective combination for an E-AB sensor with stable sensitivity, and a wide variety of DNA aptamers can be applied without any special treatment.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , ADN/química , Diamante/química , Doxorrubicina/análisis , Técnicas Electroquímicas/métodos , Boro/química , Doxorrubicina/química , Técnicas Electroquímicas/instrumentación , Electrodos , Límite de Detección
9.
Nihon Yakurigaku Zasshi ; 153(6): 273-277, 2019.
Artículo en Japonés | MEDLINE | ID: mdl-31178532

RESUMEN

Continuous and real-time measurement of local concentrations of systemically administered drugs in vivo must be crucial for pharmacological studies. Nevertheless, conventional methods require considerable samples quantity and have poor sampling rates. Additionally, they cannot determine how drug kinetics correlates with target function over time. Here, we describe a system with two different sensors. One is a needle-type microsensor composed of boron-doped diamond with a tip of ~40 µm in diameter, and the other is a glass microelectrode. We first tested bumetanide. This diuretic can induce deafness. In the guinea-pig cochlea injected intravenously with bumetanide, the changes of the drug concentration and the extracellular potential underlying hearing were simultaneously measured in real time. We further examined an antiepileptic drug lamotrigine in the rat brain, and tracked its kinetics and at the same time the local field potentials representing neuronal activity. The action of the anticancer reagent doxorubicin was also monitored in the cochlea. This microsensing system may be applied to analyze pharmacokinetics and pharmacodynamics of various drugs at local sites in vivo, and contribute to promoting the pharmacological researches.


Asunto(s)
Boro , Cóclea/efectos de los fármacos , Diamante , Doxorrubicina/farmacología , Microelectrodos , Animales , Encéfalo/efectos de los fármacos , Bumetanida/farmacología , Cobayas , Lamotrigina/farmacología , Neuronas/efectos de los fármacos , Ratas
10.
Chem Commun (Camb) ; 55(7): 897-900, 2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30489578

RESUMEN

We have developed a new method for fabricating all-diamond microelectrodes. The process comprises three steps: masking the tip of an electrode by electroplating with chromium, depositing undoped diamond, which acts as an insulator on the sides of the electrode, and removing the chromium mask to expose the tip of the electrode. The active area of the electrode can be easily controlled in combination only with a conventional electroplating technique.

11.
Gastric Cancer ; 20(6): 1004-1009, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28466360

RESUMEN

A previous dose-escalation study of sulfasalazine (SSZ), an inhibitor of cystine-glutamate exchange transporter xc (-), in the variant form of CD44 (CD44v)-positive cancer stem cells (CSCs) suggested that administration of SSZ induces the reduction of CD44v-positive cells and intracellular reduced glutathione (GSH) levels in patients with advanced gastric cancer (AGC). Here we report a study to evaluate SSZ in combination with cisplatin in patients with CD44v-expressing AGC refractory to cisplatin. SSZ was given by oral administration four times daily with 2 weeks on and 1 week off. Cisplatin at 60 mg/m2 was administered every 3 weeks. Of the 15 patients who underwent prescreening of CD44v expression, 8 patients were positive, and 7 patients were treated with the dose level of SSZ at 6 g/day. One patient experienced dose-limiting toxicity (DLT) as grade 3 anorexia. Although no other patients experienced DLT, 4 patients required dose interruption or reduction of SSZ; thus, we terminated further dose escalation. No patient achieved objective response, but 1 patient completed six cycles with stable disease for more than 4 months as well as reduction of intratumoral GSH level. The combination of SSZ plus cisplatin was manageable, although dose modification was frequently required during a short observational period.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias Gástricas/tratamiento farmacológico , Adenocarcinoma/mortalidad , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Cisplatino/administración & dosificación , Cisplatino/efectos adversos , Supervivencia sin Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Receptores de Hialuranos , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Neoplasias Gástricas/mortalidad , Sulfasalazina/administración & dosificación , Sulfasalazina/efectos adversos
12.
Nat Biomed Eng ; 1(8): 654-666, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31015607

RESUMEN

Real-time recording of the kinetics of systemically administered drugs in in vivo microenvironments may accelerate the development of effective medical therapies. However, conventional methods require considerable analyte quantities, have low sampling rates and do not address how drug kinetics correlate with target function over time. Here, we describe the development and application of a drug-sensing system consisting of a glass microelectrode and a microsensor composed of boron-doped diamond with a tip of around 40 µm in diameter. We show that, in the guinea pig cochlea, the system can measure-simultaneously and in real time-changes in the concentration of bumetanide (a diuretic that is ototoxic but applicable to epilepsy treatment) and the endocochlear potential underlying hearing. In the rat brain, we tracked the kinetics of the drug and the local field potentials representing neuronal activity. We also show that the actions of the antiepileptic drug lamotrigine and the anticancer reagent doxorubicin can be monitored in vivo. Our microsensing system offers the potential to detect pharmacological and physiological responses that might otherwise remain undetected.

13.
Sci Rep ; 6: 32429, 2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27599852

RESUMEN

The electrochemical detection of oxytocin using boron-doped diamond (BDD) electrodes was studied. Cyclic voltammetry of oxytocin in a phosphate buffer solution exhibits an oxidation peak at +0.7 V (vs. Ag/AgCl), which is attributable to oxidation of the phenolic group in the tyrosyl moiety. Furthermore, the linearity of the current peaks obtained in flow injection analysis (FIA) using BDD microelectrodes over the oxytocin concentration range from 0.1 to 10.0 µM with a detection limit of 50 nM (S/N = 3) was high (R(2) = 0.995). Although the voltammograms of oxytocin and vasopressin observed with an as-deposited BDD electrode, as well as with a cathodically-reduced BDD electrode, were similar, a clear distinction was observed with anodically-oxidized BDD electrodes due to the attractive interaction between vasopressin and the oxidized BDD surface. By means of this distinction, selective measurements using chronoamperometry combined with flow injection analysis at an optimized potential were demonstrated, indicating the possibility of making selective in situ or in vivo measurements of oxytocin.


Asunto(s)
Técnicas Biosensibles , Oxitocina/aislamiento & purificación , Vasopresinas/aislamiento & purificación , Boro/química , Electrodos , Límite de Detección , Oxidación-Reducción , Oxitocina/química , Vasopresinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA