Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 125, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212625

RESUMEN

Dynamics in a quantum material is described by quantized collective motion: a quasiparticle. The single-quasiparticle description is useful for a basic understanding of the system, whereas a phenomenon beyond the simple description such as quasiparticle decay which affects the current carried by the quasiparticle is an intriguing topic. The instability of the quasiparticle is phenomenologically determined by the magnitude of the repulsive interaction between a single quasiparticle and the two-quasiparticle continuum. Although the phenomenon has been studied in several materials, thermodynamic tuning of the quasiparticle decay in a single material has not yet been investigated. Here we show, by using neutron scattering, magnetic field control of the magnon decay in a quantum antiferromagnet RbFeCl3, where the interaction between the magnon and continuum is tuned by the field. At low fields where the interaction is small, the single magnon decay process is observed. In contrast, at high fields where the interaction exceeds a critical magnitude, the magnon is pushed downwards in energy and its lifetime increases. Our study demonstrates that field control of quasiparticle decay is possible in the system where the two-quasiparticle continuum covers wide momentum-energy space, and the phenomenon of the magnon avoiding decay is ubiquitous.

2.
Nat Commun ; 12(1): 5559, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548484

RESUMEN

Spin-orbit coupled honeycomb magnets with the Kitaev interaction have received a lot of attention due to their potential of hosting exotic quantum states including quantum spin liquids. Thus far, the most studied Kitaev systems are 4d/5d-based honeycomb magnets. Recent theoretical studies predicted that 3d-based honeycomb magnets, including Na2Co2TeO6 (NCTO), could also be a potential Kitaev system. Here, we have used a combination of heat capacity, magnetization, electron spin resonance measurements alongside inelastic neutron scattering (INS) to study NCTO's quantum magnetism, and we have found a field-induced spin disordered state in an applied magnetic field range of 7.5 T < B (⊥ b-axis) < 10.5 T. The INS spectra were also simulated to tentatively extract the exchange interactions. As a 3d-magnet with a field-induced disordered state on an effective spin-1/2 honeycomb lattice, NCTO expands the Kitaev model to 3d compounds, promoting further interests on the spin-orbital effect in quantum magnets.

3.
J Phys Condens Matter ; 34(4)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34517360

RESUMEN

Finding new materials with antiferromagnetic (AFM) Kitaev interaction is an urgent issue for quantum magnetism research. We conclude that Na3Co2SbO6and Na2Co2TeO6are new honeycomb cobalt-based systems with AFM Kitaev interaction by carrying out inelastic neutron scattering experiments and subsequent analysis. The spin-orbit excitons observed at 20-28 meV in both compounds strongly support the idea that Co2+ions of both compounds have a spin-orbital entangledJeff= 1/2 state. Furthermore, we found that a generalized Kitaev-Heisenberg Hamiltonian can describe the spin-wave excitations of both compounds with additional 3rd nearest-neighbor interaction. Our best-fit parameters show significant AFM Kitaev terms and off-diagonal symmetric anisotropy terms of a similar magnitude in both compounds. We also found a strong magnon-damping effect at the higher energy part of the spin waves, entirely consistent with observations in other Kitaev magnets. Our work suggests Na3Co2SbO6and Na2Co2TeO6as rare examples of the AFM Kitaev magnets based on the systematic studies of the spin waves and analysis.

4.
Nat Commun ; 12(1): 4382, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34282147

RESUMEN

Dimensionality is a critical factor in determining the properties of solids and is an apparent built-in character of the crystal structure. However, it can be an emergent and tunable property in geometrically frustrated spin systems. Here, we study the spin dynamics of the tetrahedral cluster antiferromagnet, pharmacosiderite, via muon spin resonance and neutron scattering. We find that the spin correlation exhibits a two-dimensional characteristic despite the isotropic connectivity of tetrahedral clusters made of spin 5/2 Fe3+ ions in the three-dimensional cubic crystal, which we ascribe to two-dimensionalisation by geometrical frustration based on spin wave calculations. Moreover, we suggest that even one-dimensionalisation occurs in the decoupled layers, generating low-energy and one-dimensional excitation modes, causing large spin fluctuation in the classical spin system. Pharmacosiderite facilitates studying the emergence of low-dimensionality and manipulating anisotropic responses arising from the dimensionality using an external magnetic field.

5.
Nat Commun ; 11(1): 3142, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32561856

RESUMEN

Chemical doping is one of the most important strategies for tuning electrical properties of semiconductors, particularly thermoelectric materials. Generally, the main role of chemical doping lies in optimizing the carrier concentration, but there can potentially be other important effects. Here, we show that chemical doping plays multiple roles for both electron and phonon transport properties in half-Heusler thermoelectric materials. With ZrNiSn-based half-Heusler materials as an example, we use high-quality single and polycrystalline crystals, various probes, including electrical transport measurements, inelastic neutron scattering measurement, and first-principles calculations, to investigate the underlying electron-phonon interaction. We find that chemical doping brings strong screening effects to ionized impurities, grain boundary, and polar optical phonon scattering, but has negligible influence on lattice thermal conductivity. Furthermore, it is possible to establish a carrier scattering phase diagram, which can be used to select reasonable strategies for optimization of the thermoelectric performance.

6.
J Phys Condens Matter ; 29(23): 235802, 2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28497775

RESUMEN

We have measured the infrared reflectivity of single-crystalline samples of LaCo1-x Rh x O3 (x = 0, 0.05 and 0.10) from 10 to 300 K from 0.05 to 0.15 eV. We find that the optical phonons of the Co-O stretching mode depend on temperature and the Rh content. Analysis with three Lorentz oscillators reveals that the spin state of Co3+ in LaCo1-x Rh x O3 can be understood in terms of a solid solution of low-spin- and high-spin-state Co3+ ions, and the substituted Rh ion retains some fraction of the high-spin Co3+ ions down to low temperature.

7.
Chem Commun (Camb) ; 53(27): 3826-3829, 2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28322390

RESUMEN

A new square-planar zinc oxyhalide, Sr2ZnO2Cl2, was successfully synthesized using a high-pressure method. Absorption spectroscopy revealed an indirect band gap of 3.66 eV. Electronic structure calculations indicated a strong hybridization between Zn 3dx2-y2 and O 2p orbitals, which is distinct from tetrahedrally coordinated ZnO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...