Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Brain Stimul ; 17(3): 648-659, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38740183

RESUMEN

BACKGROUND: Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation method that can modulate many brain functions including learning and memory. Recent evidence suggests that tDCS memory effects may be caused by co-stimulation of scalp nerves such as the trigeminal nerve (TN), and not the electric field in the brain. The TN gives input to brainstem nuclei, including the locus coeruleus that controls noradrenaline release across brain regions, including hippocampus. However, the effects of TN direct current stimulation (TN-DCS) are currently not well understood. HYPOTHESIS: In this study we tested the hypothesis that stimulation of the trigeminal nerve with direct current manipulates hippocampal activity via an LC pathway. METHODS: We recorded neural activity in rat hippocampus using multichannel silicon probes. We applied 3 min of 0.25 mA or 1 mA TN-DCS, monitored hippocampal activity for up to 1 h and calculated spikes-rate and spike-field coherence metrics. Subcutaneous injections of xylocaine were used to block TN, while intraperitoneal and intracerebral injection of clonidine were used to block the LC pathway. RESULTS: We found that 1 mA TN-DCS caused a significant increase in hippocampal spike-rate lasting 45 min in addition to significant changes in spike-field coherence, while 0.25 mA TN-DCS did not. TN blockage prevented spike-rate increases, confirming effects were not caused by the electric field in the brain. When 1 mA TN-DCS was delivered during clonidine blockage no increase in spike-rate was observed, suggesting an important role for the LC-noradrenergic pathway. CONCLUSION: These results support our hypothesis and provide a neural basis to understand the tDCS TN co-stimulation mechanism. TN-DCS emerges as an important tool to potentially modulate learning and memory.


Asunto(s)
Hipocampo , Nervio Trigémino , Animales , Hipocampo/fisiología , Ratas , Masculino , Nervio Trigémino/fisiología , Ratas Sprague-Dawley , Estimulación Transcraneal de Corriente Directa/métodos , Locus Coeruleus/fisiología
2.
bioRxiv ; 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37745349

RESUMEN

Background: Recent evidence suggests that transcranial direct current stimulation (tDCS) indirectly influences brain activity through cranial nerve pathways, particularly the trigeminal nerve. However, the electrophysiological effects of direct current (DC) stimulation on the trigeminal nerve (DC-TNS) and its impact on trigeminal nuclei remain unknown. These nuclei exert control over brainstem centers regulating neurotransmitter release, such as serotonin and norepinephrine, potentially affecting global brain activity. Objectives: To investigate how DC-TNS impacts neuronal activity in the principal sensory nucleus (NVsnpr) and the mesencephalic nucleus of the trigeminal nerve (MeV). Methods: Twenty male Sprague Dawley rats (n=10 each nucleus) were anesthetized with urethane. DC stimulation, ranging from 0.5 to 3 mA, targeted the trigeminal nerve's marginal branch. Simultaneously, single-unit electrophysiological recordings were obtained using a 32-channel silicon probe, comprising three one-minute intervals: pre-stimulation, DC stimulation, and post-stimulation. Xylocaine was administered to block the trigeminal nerve as a control. Results: DC-TNS significantly increased neuronal spiking activity in both NVsnpr and MeV, returning to baseline during the post-stimulation phase. When the trigeminal nerve was blocked with xylocaine, the robust 3 mA trigeminal nerve DC stimulation failed to induce increased spiking activity in the trigeminal nuclei. Conclusion: Our results offer initial empirical support for trigeminal nuclei activity modulation via DC-TNS. This discovery supports the hypothesis that cranial nerve pathways may play a pivotal role in mediating tDCS effects, setting the stage for further exploration into the complex interplay between peripheral nerves and neural modulation techniques. Highlights: Direct current stimulation of the trigeminal nerve (DC-TNS) modulates neural activity in rat NVsnpr and MeV.Xylocaine administration reversibly blocks the DC-TNS effect on neural responses.Trigeminal nerve stimulation should be considered a possible mechanism of action of tDCS.

3.
Front Hum Neurosci ; 17: 1101490, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415857

RESUMEN

Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation method that has been used to alter cognition in hundreds of experiments. During tDCS, a low-amplitude current is delivered via scalp electrodes to create a weak electric field in the brain. The weak electric field causes membrane polarization in cortical neurons directly under the scalp electrodes. It is generally assumed that this mechanism causes the observed effects of tDCS on cognition. However, it was recently shown that some tDCS effects are not caused by the electric field in the brain but rather via co-stimulation of cranial and cervical nerves in the scalp that also have neuromodulatory effects that can influence cognition. This peripheral nerve co-stimulation mechanism is not controlled for in tDCS experiments that use the standard sham condition. In light of this new evidence, results from previous tDCS experiments could be reinterpreted in terms of a peripheral nerve co-stimulation mechanism. Here, we selected six publications that reported tDCS effects on cognition and attributed the effects to the electric field in the brain directly under the electrode. We then posed the question: given the known neuromodulatory effects of cranial and cervical nerve stimulation, could the reported results also be understood in terms of tDCS peripheral nerve co-stimulation? We present our re-interpretation of these results as a way to stimulate debate within the neuromodulation field and as a food-for-thought for researchers designing new tDCS experiments.

4.
Neuromodulation ; 26(4): 738-744, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36117028

RESUMEN

INTRODUCTION: Essential tremor (ET) is the most common neurologic movement disorder worldwide. It is characterized by a postural tremor, mostly in the upper extremities, causing difficulties in daily activities that may lead to social exclusion. Some patients with ET do not respond well to or do not tolerate medication. Thus, deep brain stimulation can be offered. In a recent study, we proposed a novel neuromodulation technique called epicranial current stimulation (ECS) that works in a minimally invasive way by placing the electrodes subcutaneously under the skin and directly over the skull. In this study, we investigated the feasibility of using epicranial direct current stimulation (EDCS) to suppress tremor in a rat harmaline ET model. MATERIALS AND METHODS: In experiment 1, seven Sprague Dawley rats were implanted with ECS electrodes placed over the motor cortex (MC) and the cerebellum to investigate whether stimulating between them could suppress tremor. In experiments 2 and 3, eight rats were implanted with ECS electrodes placed over the MC, cerebellum, and the rostral skull to separate the effects on tremor caused by stimulating each target. During each experiment, the rats were injected with harmaline, which induced tremor that was quantified using an accelerometer. EDCS was then applied through the different electrode configurations to evaluate their tremor suppression effectiveness. RESULTS: Results from experiment 1 showed that MCcathode-Cerebellaranode suppressed tremor compared with stimulation-OFF but MCanode-Cerebellarcathode did not. Furthermore, experiments 2 and 3 showed that it was the cerebellar anodal electrode that was driving tremor suppression. CONCLUSION: Cerebellar EDCS suppressed harmaline tremor in rats in a polarity-dependent manner. EDCS could be a promising neuromodulation method for patients with ET.


Asunto(s)
Temblor Esencial , Harmalina , Ratas , Animales , Harmalina/farmacología , Harmalina/uso terapéutico , Temblor/terapia , Ratas Sprague-Dawley , Temblor Esencial/terapia , Cerebelo
5.
bioRxiv ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38168241

RESUMEN

Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation method that can modulate many brain functions including learning and memory. Recent evidence suggests that tDCS memory effects may be caused by co-stimulation of scalp nerves such as the trigeminal nerve (TN), and not the electric field in the brain. The TN gives input to brainstem nuclei, including the locus coeruleus that controls noradrenaline release across brain regions, including hippocampus. However, the effects of TN direct current stimulation (TN-DCS) are currently not well understood. In this study we hypothesized that TN-DCS manipulates hippocampal activity via an LC-noradrenergic bottom-up pathway. We recorded neural activity in rat hippocampus using multichannel silicon probes. We applied 3 minutes of 0.25 mA or 1 mA TN-DCS, monitored hippocampal activity for up to 1 hour and calculated spikes-rate and spike-field coherence metrics. Subcutaneous injections of xylocaine were used to block TN and intraperitoneal injection of clonidine to block the LC pathway. We found that 1 mA TN-DCS caused a significant increase in hippocampal spike-rate lasting 45 minutes in addition to significant changes in spike-field coherence, while 0.25 mA TN-DCS did not. TN blockage prevented spike-rate increases, confirming effects were not caused by the electric field in the brain. When 1 mA TN-DCS was delivered during clonidine blockage no increase in spike-rate was observed, suggesting an important role for the LC-noradrenergic pathway. These results provide a neural basis to support a tDCS TN co-stimulation mechanism. TN-DCS emerges as an important tool to potentially modulate learning and memory. Highlights: Trigeminal nerve direct current stimulation (TN-DCS) boosts hippocampal spike ratesTN-DCS alters spike-field coherence in theta and gamma bands across the hippocampus.Blockade experiments indicate that TN-DCS modulated hippocampal activity via the LC-noradrenergic pathway.TN-DCS emerges as a potential tool for memory manipulation.

6.
J Neurosci ; 42(32): 6221-6231, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35790404

RESUMEN

Single neurons often exhibit endogenous oscillatory activity centered around a specific frequency band. Transcranial alternating current stimulation (tACS) can generate a weak oscillating extracellular field in the brain that causes subthreshold membrane potential shifts that can affect spike timing at the single neuron level. Many studies have now shown that the endogenous oscillation can be entrained when the tACS frequency matches that of the exogenous extracellular field. However, the effect of tACS on the amplitude of the endogenous oscillation has been less well studied. We investigated this by using exogenous extracellular fields to modulate slow-wave neural oscillations in the ketamine anesthetized male Wistar rat. We applied spatially broad extracellular fields of different frequencies while recording spiking activity from single neurons. The effect of the exogenous extracellular field on the slow-wave neural oscillation amplitude (NOA) followed a resonance pattern: large modulations were observed when the extracellular frequency matched the endogenous frequency of the neuron, while extracellular fields with frequencies far away from the endogenous frequency had little effect. No changes in spike-rate were observed for any of the extracellular fields applied. Our results demonstrate that in addition to the previously reported entrainment and Arnold tongue patterns, weak oscillating extracellular fields modulate the amplitude of the endogenous neural oscillation without any changes in spike-rate, and that this modulation follows a frequency-specific resonance pattern.SIGNIFICANCE STATEMENT Neural activity often oscillates around specific endogenous frequencies. Transcranial alternating current stimulation (tACS) is a neuromodulation method which biases spike-times and alter endogenous activity. Most tACS studies focus on entrainment effects which occur when tACS and endogenous neural frequencies are matched. In this study we varied the frequency of the applied tACS and investigated its effect on amplitude of the neural oscillation. Our results revealed a resonance pattern where tACS frequencies close to the endogenous frequency caused an increase in neural oscillation amplitude (NOA) specifically at the applied tACS frequency, while applying tACS frequencies farther away caused little or no change in NOA. Furthermore, applying tACS at differing frequencies caused the amplitude of the neural oscillation at the prestimulation endogenous frequency to decrease.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Animales , Encéfalo , Masculino , Neuronas/fisiología , Ratas , Ratas Wistar , Estimulación Transcraneal de Corriente Directa/métodos
7.
Front Cell Neurosci ; 16: 806556, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360495

RESUMEN

Neural entrainment is the phase synchronization of a population of neurons to an external rhythmic stimulus such as applied in the context of transcranial alternating current stimulation (tACS). tACS can cause profound effects on human behavior. However, there remain a significant number of studies that find no behavioral effect when tACS is applied to human subjects. To investigate this discrepancy, we applied time sensitive phase lock value (PLV) based analysis to single unit data from the rat motor cortex. The analysis revealed that detection of neural entrainment depends critically on the epoch length within which spiking information is accumulated. Increasing the epoch length allowed for detection of progressively weaker levels of neural entrainment. Based on this single unit analysis, we hypothesized that tACS effects on human behavior would be more easily detected in a behavior paradigm which utilizes longer epoch lengths. We tested this by using tACS to entrain tremor in patients and healthy volunteers. When the behavioral data were analyzed using short duration epochs tremor entrainment effects were not detectable. However, as the epoch length was progressively increased, weak tremor entrainment became detectable. These results suggest that tACS behavioral paradigms that rely on the accumulation of information over long epoch lengths will tend to be successful at detecting behavior effects. However, tACS paradigms that rely on short epoch lengths are less likely to detect effects.

8.
J Neural Eng ; 19(1)2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35078163

RESUMEN

Objective. We present a framework to objectively test and compare stimulation artefact removal techniques in the context of neural spike sorting.Approach. To this end, we used realistic hybrid ground-truth spiking data, with superimposed artefacts fromin vivorecordings. We used the framework to evaluate and compare several techniques: blanking, template subtraction by averaging, linear regression, and a multi-channel Wiener filter (MWF).Main results. Our study demonstrates that blanking and template subtraction result in a poorer spike sorting performance than linear regression and MWF, while the latter two perform similarly. Finally, to validate the conclusions found from the hybrid evaluation framework, we also performed a qualitative analysis onin vivorecordings without artificial manipulations.Significance. Our framework allows direct quantification of the impact of the residual artefact on the spike sorting accuracy, thereby allowing for a more objective and more relevant comparison compared to indirect signal quality metrics that are estimated from the signal statistics. Furthermore, the availability of a ground truth in the form of single-unit spiking activity also facilitates a better estimation of such signal quality metrics.


Asunto(s)
Artefactos , Modelos Neurológicos , Potenciales de Acción/fisiología , Algoritmos , Neuronas/fisiología , Procesamiento de Señales Asistido por Computador
9.
Brain Stimul ; 15(2): 286-290, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35093561

RESUMEN

BACKGROUND: Since the inception of DBS, cathodic pulses have been used. OBJECTIVE: To investigate the effect of anodic and symmetric biphasic pulses on the therapeutic window (TW) in essential tremor (ET) patients. METHODS: A randomized, doubled-blinded, cross-over design was used to test the effect of cathodic, anodic and symmetric biphasic pulses (cathode-first and anode-first) on the TW in an acute clinical setting. TW was defined as the difference between the minimal stimulation amplitude provoking side effects and minimal stimulation amplitude inducing tremor arrest. RESULTS: 9 ET patients (10 hemispheres) were included. Anodic stimulation induced a significantly larger TW compared to cathodic stimulation (p = 0.008). Symmetric biphasic stimulation also widened the TW compared to cathodic stimulation for both cathode- (p = 0.047) and anode-first (p = 0.008) biphasic pulses. For both anodic and biphasic pulses, the effect on TW was mainly driven by the change in side effect threshold. The order of the phases in the biphasic pulse had a significant effect on the side effect threshold (p = 0.039), with biphasic-anode first having the highest value. All pulse shapes were safe in the acute setting. CONCLUSION: Anodic and symmetric biphasic pulses increase TW in ET patients.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Estudios Cruzados , Estimulación Encefálica Profunda/efectos adversos , Método Doble Ciego , Estimulación Eléctrica , Electrodos , Temblor Esencial/terapia , Humanos
10.
Front Neurosci ; 15: 779271, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975383

RESUMEN

Background: Epicranial cortical stimulation (ECS) is a minimally invasive neuromodulation technique that works by passing electric current between subcutaneous electrodes positioned on the skull. ECS causes a stronger and more focused electric field in the cortex compared to transcranial electric stimulation (TES) where the electrodes are placed on the scalp. However, it is unknown if ECS can target deeper regions where the electric fields become relatively weak and broad. Recently, interferential stimulation (IF) using scalp electrodes has been proposed as a novel technique to target subcortical regions. During IF, two high, but slightly different, frequencies are applied which sum to generate a low frequency field (i.e., 10 Hz) at a target subcortical region. We hypothesized that IF using ECS electrodes would cause stronger and more focused subcortical stimulation than that using TES electrodes. Objective: Use computational modeling to determine if interferential stimulation-epicranial cortical stimulation (IF-ECS) can target subcortical regions. Then, compare the focality and field strength of IF-ECS to that of interferential Stimulation-transcranial electric stimulation (IF-TES) in the same subcortical region. Methods: A human head computational model was developed with 19 TES and 19 ECS disk electrodes positioned on a 10-20 system. After tetrahedral mesh generation the model was imported to COMSOL where the electric field distribution was calculated for each electrode separately. Then in MATLAB, subcortical targets were defined and the optimal configurations were calculated for both the TES and ECS electrodes. Results: Interferential stimulation using ECS electrodes can deliver stronger and more focused electric fields to subcortical regions than IF using TES electrodes. Conclusion: Interferential stimulation combined with ECS is a promising approach for delivering subcortical stimulation without the need for a craniotomy.

11.
Mol Psychiatry ; 26(2): 456-461, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33299136

RESUMEN

Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation method widely used by neuroscientists and clinicians for research and therapeutic purposes. tDCS is currently under investigation as a treatment for a range of psychiatric disorders. Despite its popularity, a full understanding of tDCS's underlying neurophysiological mechanisms is still lacking. tDCS creates a weak electric field in the cerebral cortex which is generally assumed to cause the observed effects. Interestingly, as tDCS is applied directly on the skin, localized peripheral nerve endings are exposed to much higher electric field strengths than the underlying cortices. Yet, the potential contribution of peripheral mechanisms in causing tDCS's effects has never been systemically investigated. We hypothesize that tDCS induces arousal and vigilance through peripheral mechanisms. We suggest that this may involve peripherally-evoked activation of the ascending reticular activating system, in which norepinephrine is distributed throughout the brain by the locus coeruleus. Finally, we provide suggestions to improve tDCS experimental design beyond the standard sham control, such as topical anesthetics to block peripheral nerves and active controls to stimulate non-target areas. Broad adoption of these measures in all tDCS experiments could help disambiguate peripheral from true transcranial tDCS mechanisms.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Encéfalo , Humanos , Nervios Periféricos
13.
Front Neurosci ; 13: 773, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396045

RESUMEN

BACKGROUND: Invasive cortical stimulation (ICS) is a neuromodulation method in which electrodes are implanted on the cortex to deliver chronic stimulation. ICS has been used to treat neurological disorders such as neuropathic pain, epilepsy, movement disorders and tinnitus. Noninvasive neuromodulation methods such as transcranial magnetic stimulation and transcranial electrical stimulation (TES) show great promise in treating some neurological disorders and require no surgery. However, only acute stimulation can be delivered. Epicranial current stimulation (ECS) is a novel concept for delivering chronic neuromodulation through subcutaneous electrodes implanted on the skull. The use of concentric-ring ECS electrodes may allow spatially focused stimulation and offer a less invasive alternative to ICS. OBJECTIVES: Demonstrate ECS proof-of-concept using concentric-ring electrodes in rats and then use a computational model to explore the feasibility and limitations of ECS in humans. METHODS: ECS concentric-ring electrodes were implanted in 6 rats and pulsatile stimulation delivered to the motor cortex. An MRI based electro-anatomical human head model was used to explore different ECS concentric-ring electrode designs and these were compared with ICS and TES. RESULTS: Concentric-ring ECS electrodes can selectively stimulate the rat motor cortex. The computational model showed that the concentric-ring ECS electrode design can be optimized to achieve focused cortical stimulation. In general, focality was less than ICS but greater than noninvasive transcranial current stimulation. CONCLUSION: ECS could be a promising minimally invasive alternative to ICS. Further work in large animal models and patients is needed to demonstrate feasibility and long-term stability.

15.
Brain Stimul ; 12(4): 1001-1009, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30930210

RESUMEN

BACKGROUND: Transcranial alternating current stimulation (tACS) has been shown to modulate auditory, visual, cognitive and motor function. However, tACS effects can often be small and difficult to reproduce. Thus, the establishment of robust experimental and analysis procedures is of high importance. We reviewed the analysis used in six studies that investigated if tACS can phase-modulate auditory perception. All studies used analytical methods that introduce bias and could produce false positive results. Four studies corrected for this bias but two did not. OBJECTIVE: Our objectives were two-fold: 1) Use simulated null hypothesis datasets, where no tACS effect is present, to determine if uncorrected analytical bias could account for some of the reported effects on auditory perception. 2) Help establish best practices to correct for bias when analyzing tACS phase-effects on perception. METHODS: We simulated null hypothesis datasets (i.e. no tACS effect) by drawing samples for all tACS and sham conditions from the same normal distribution. We then applied the reported analyses to the null hypothesis datasets. RESULTS: Reported results from studies that did not correct for analytical bias could be reproduced from the null hypothesis datasets. However, results for studies that did correct for analytical bias could not be reproduced from the null hypothesis datasets. CONCLUSION: True effects of tACS on auditory perception can be detected if analytical bias is accounted for by using correction procedures. However, to fully establish the effects of tACS on auditory perception a reanalysis of the data for the studies that used biased analysis without correction procedures is needed.


Asunto(s)
Percepción Auditiva/fisiología , Análisis de Datos , Bases de Datos Factuales/estadística & datos numéricos , Estimulación Transcraneal de Corriente Directa/estadística & datos numéricos , Sesgo , Femenino , Humanos , Masculino , Estimulación Transcraneal de Corriente Directa/métodos
16.
Nat Commun ; 10(1): 266, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30655523

RESUMEN

Transcranial alternating current stimulation (tACS) is a noninvasive neuromodulation method which has been shown to modulate hearing, motor, cognitive and memory function. However, the mechanisms underpinning these findings are controversial, as studies show that the current reaching the cortex may not be strong enough to entrain neural activity. Here, we propose a new hypothesis to reconcile these opposing results: tACS effects are caused by transcutaneous stimulation of peripheral nerves in the skin and not transcranial stimulation of cortical neurons. Rhythmic activity from peripheral nerves then entrains cortical neurons. A series of experiments in rats and humans isolated the transcranial and transcutaneous mechanisms and showed that the reported effects of tACS on the motor system can be caused by transcutaneous stimulation of peripheral nerves. Whether or not the transcutaneous mechanism will generalize to tACS effects on other systems is debatable but should be investigated.


Asunto(s)
Corteza Motora/fisiología , Neuronas/fisiología , Nervios Periféricos/fisiología , Piel/inervación , Estimulación Transcraneal de Corriente Directa , Adulto , Animales , Simulación por Computador , Electrodos , Electroencefalografía , Femenino , Voluntarios Sanos , Humanos , Masculino , Potenciales de la Membrana , Modelos Anatómicos , Modelos Animales , Modelos Biológicos , Corteza Motora/citología , Ratas , Ratas Wistar , Temblor/diagnóstico , Temblor/etiología , Temblor/fisiopatología , Adulto Joven
17.
Sci Rep ; 8(1): 8221, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29795166

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

18.
Sci Rep ; 8(1): 4927, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29563594

RESUMEN

Transcranial alternating current stimulation (tACS) is a noninvasive neuromodulation method that can entrain physiological tremor in healthy volunteers. We conducted two experiments to investigate the effectiveness of high-amplitude and focused tACS montages at entraining physiological tremor. Experiment 1 used saline-soaked sponge electrodes with an extra-cephalic return electrode and compared the effects of a motor (MC) and prefrontal cortex (PFC) electrode location. Average peak-amplitude was 1.925 mA. Experiment 2 used gel-filled cup-electrodes in a 4 × 1 focused montage and compared the effects of MC and occipital cortex (OC) tACS. Average peak-amplitude was 4.45 mA. Experiment 1 showed that unfocused MC and PFC tACS both produced phosphenes and significant phase entrainment. Experiment 2 showed that focused MC and OC tACS produced no phosphenes but only focused MC tACS caused significant phase entrainment. At the group level, tACS did not have a significant effect on tremor amplitude. However, with focused tACS there was a significant correlation between phase entrainment and tremor amplitude modulation: subjects with higher phase entrainment showed more tremor amplitude modulation. We conclude that: (1) focused montages allow for high-amplitude tACS without phosphenes and (2) high amplitude focused tACS can entrain physiological tremor.


Asunto(s)
Corteza Motora/fisiopatología , Lóbulo Occipital/fisiopatología , Corteza Prefrontal/fisiopatología , Estimulación Transcraneal de Corriente Directa , Temblor , Adulto , Femenino , Humanos , Masculino , Temblor/fisiopatología , Temblor/terapia
19.
J Neurosci ; 37(39): 9389-9402, 2017 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-28847809

RESUMEN

Transcranial alternating current stimulation (tACS) uses sinusoidal, subthreshold, electric fields to modulate cortical processing. Cortical processing depends on a fine balance between excitation and inhibition and tACS acts on both excitatory and inhibitory cortical neurons. Given this, it is not clear whether tACS should increase or decrease cortical excitability. We investigated this using transcranial current stimulation of the rat (all males) motor cortex consisting of a continuous subthreshold sine wave with short bursts of suprathreshold pulse-trains inserted at different phases to probe cortical excitability. We found that when a low-rate, long-duration, suprathreshold pulse-train was used, subthreshold cathodal tACS decreased cortical excitability and anodal tACS increased excitability. However, when a high-rate, short-duration, suprathreshold pulse-train was used this pattern was inverted. An integrate-and-fire model incorporating biophysical differences between cortical excitatory and inhibitory neurons could predict the experimental data and helped interpret these results. The model indicated that low-rate suprathreshold pulse-trains preferentially stimulate excitatory cortical neurons, whereas high-rate suprathreshold pulse-trains stimulate both excitatory and inhibitory neurons. If correct, this indicates that suprathreshold pulse-train stimulation may be able to selectively control the excitation-inhibition balance within a cortical network. The excitation-inhibition balance then likely plays an important role in determining whether subthreshold tACS will increase or decrease cortical excitability.SIGNIFICANCE STATEMENT Transcranial alternating current stimulation (tACS) is a noninvasive neuromodulation method that uses weak sinusoidal electric fields to modulate cortical activity. In healthy volunteers tACS can modulate perception, cognition, and motor function but the underlying neural mechanism is poorly understood. In this study, using rat motor cortex, we found that tACS effects are highly variable: applying the same tACS waveform to the same cortical area does not always give the same change in cortical excitability. An integrate-and-fire model incorporating excitatory pyramidal and inhibitory interneurons indicated that tACS effects likely depend on the cortical excitation-inhibition balance. When cortical activity is excitation dominated one particular tACS phase increases excitability, but when the cortical activity is inhibition dominated the same tACS phase actually decreases excitability.


Asunto(s)
Potenciales Evocados , Corteza Motora/fisiología , Inhibición Neural , Animales , Masculino , Corteza Motora/citología , Neuronas/fisiología , Ratas , Ratas Wistar , Estimulación Transcraneal de Corriente Directa
20.
Cereb Cortex ; 25(12): 4839-53, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26318661

RESUMEN

The size and shape of dendrites and axons are strong determinants of neuronal information processing. Our knowledge on neuronal structure and function is primarily based on brains of laboratory animals. Whether it translates to human is not known since quantitative data on "full" human neuronal morphologies are lacking. Here, we obtained human brain tissue during resection surgery and reconstructed basal and apical dendrites and axons of individual neurons across all cortical layers in temporal cortex (Brodmann area 21). Importantly, morphologies did not correlate to etiology, disease severity, or disease duration. Next, we show that human L(ayer) 2 and L3 pyramidal neurons have 3-fold larger dendritic length and increased branch complexity with longer segments compared with temporal cortex neurons from macaque and mouse. Unsupervised cluster analysis classified 88% of human L2 and L3 neurons into human-specific clusters distinct from mouse and macaque neurons. Computational modeling of passive electrical properties to assess the functional impact of large dendrites indicates stronger signal attenuation of electrical inputs compared with mouse. We thus provide a quantitative analysis of "full" human neuron morphologies and present direct evidence that human neurons are not "scaled-up" versions of rodent or macaque neurons, but have unique structural and functional properties.


Asunto(s)
Axones , Dendritas , Neocórtex/citología , Células Piramidales/citología , Lóbulo Temporal/citología , Adulto , Anciano , Animales , Análisis por Conglomerados , Epilepsia/patología , Femenino , Humanos , Macaca fascicularis/anatomía & histología , Macaca mulatta/anatomía & histología , Masculino , Ratones/anatomía & histología , Ratones Endogámicos C57BL/anatomía & histología , Persona de Mediana Edad , Especificidad de la Especie , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...