Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 667, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026284

RESUMEN

BACKGROUND: In the fight against GBM, drug repurposing emerges as a viable and time-saving approach to explore new treatment options. Chlorpromazine, an old antipsychotic medication, has recently arisen as a promising candidate for repositioning in GBM therapy in addition to temozolomide, the first-line standard of care. We previously demonstrated the antitumor efficacy of chlorpromazine and its synergistic effects with temozolomide in suppressing GBM cell malignant features in vitro. This prompted us to accomplish a Phase II clinical trial to evaluate the efficacy and safety of adding chlorpromazine to temozolomide in GBM patients with unmethylated MGMT gene promoter. In this in vitro study, we investigate the potential role of chlorpromazine in overcoming temozolomide resistance. METHODS: In our experimental set, we analyzed Connexin-43 expression at both the transcriptional and protein levels in control- and chlorpromazine-treated GBM cells. DNA damage and subsequent repair were assessed by immunofluorescence of γ-H2AX and Reverse-Phase Protein microArrays in chlorpromazine treated GBM cell lines. To elucidate the relationship between DNA repair systems and chemoresistance, we analyzed a signature of DNA repair genes in GBM cells after treatment with chlorpromazine, temozolomide and Connexin-43 downregulation. RESULTS: Chlorpromazine treatment significantly downregulated connexin-43 expression in GBM cells, consequently compromising connexin-dependent cellular resilience, and ultimately contributing to cell death. In line with this, we observed concordant post-translational modifications of molecular determinants involved in DNA damage and repair pathways. Our evaluation of DNA repair genes revealed that temozolomide elicited an increase, while chlorpromazine, as well as connexin-43 silencing, a decrease in DNA repair gene expression in GBM cells. CONCLUSIONS: Chlorpromazine potentiates the cytotoxic effects of the alkylating agent temozolomide through a mechanism involving downregulation of Cx43 expression and disruption of the cell cycle arrest essential for DNA repair processes. This finding suggests that chlorpromazine may be a potential therapeutic strategy to overcome TMZ resistance in GBM cells by inhibiting their DNA repair mechanisms.


Asunto(s)
Clorpromazina , Conexina 43 , Reparación del ADN , Resistencia a Antineoplásicos , Glioblastoma , Temozolomida , Clorpromazina/farmacología , Clorpromazina/uso terapéutico , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/genética , Reparación del ADN/efectos de los fármacos , Conexina 43/metabolismo , Conexina 43/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Sinergismo Farmacológico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética
2.
Cell Death Dis ; 14(12): 821, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092755

RESUMEN

Glioblastoma (GBM) is the most frequent and lethal brain tumor, whose therapeutic outcome - only partially effective with current schemes - places this disease among the unmet medical needs, and effective therapeutic approaches are urgently required. In our attempts to identify repositionable drugs in glioblastoma therapy, we identified the neuroleptic drug chlorpromazine (CPZ) as a very promising compound. Here we aimed to further unveil the mode of action of this drug. We performed a supervised recognition of the signal transduction pathways potentially influenced by CPZ via Reverse-Phase Protein microArrays (RPPA) and carried out an Activity-Based Protein Profiling (ABPP) followed by Mass Spectrometry (MS) analysis to possibly identify cellular factors targeted by the drug. Indeed, the glycolytic enzyme PKM2 was identified as one of the major targets of CPZ. Furthermore, using the Seahorse platform, we analyzed the bioenergetics changes induced by the drug. Consistent with the ability of CPZ to target PKM2, we detected relevant changes in GBM energy metabolism, possibly attributable to the drug's ability to inhibit the oncogenic properties of PKM2. RPE-1 non-cancer neuroepithelial cells appeared less responsive to the drug. PKM2 silencing reduced the effects of CPZ. 3D modeling showed that CPZ interacts with PKM2 tetramer in the same region involved in binding other known activators. The effect of CPZ can be epitomized as an inhibition of the Warburg effect and thus malignancy in GBM cells, while sparing RPE-1 cells. These preclinical data enforce the rationale that allowed us to investigate the role of CPZ in GBM treatment in a recent multicenter Phase II clinical trial.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/patología , Clorpromazina/farmacología , Clorpromazina/uso terapéutico , Piruvato Quinasa/metabolismo , Línea Celular Tumoral , Metabolismo Energético
3.
Int J Cancer ; 153(5): 1080-1095, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37293858

RESUMEN

BRAFV600 mutations are the most common oncogenic alterations in melanoma cells, supporting proliferation, invasion, metastasis and immune evasion. In patients, these aberrantly activated cellular pathways are inhibited by BRAFi whose potent antitumor effect and therapeutic potential are dampened by the development of resistance. Here, by using primary melanoma cell lines, generated from lymph node lesions of metastatic patients, we show that the combination of two FDA-approved drugs, the histone deacetylate inhibitor (HDCAi) romidepsin and the immunomodulatory agent IFN-α2b, reduces melanoma proliferation, long-term survival and invasiveness and overcomes acquired resistance to the BRAFi vemurafenib (VEM). Targeted resequencing revealed that each VEM-resistant melanoma cell line and the parental counterpart are characterized by a distinctive and similar genetic fingerprint, shaping the differential and specific antitumor modulation of MAPK/AKT pathways by combined drug treatment. By using RNA-sequencing and functional in vitro assays, we further report that romidepsin-IFN-α2b treatment restores epigenetically silenced immune signals, modulates MITF and AXL expression and induces both apoptosis and necroptosis in sensitive and VEM-resistant primary melanoma cells. Moreover, the immunogenic potential of drug-treated VEM-resistant melanoma cells results significantly enhanced, given the increased phagocytosis rate of these cells by dendritic cells, which in turn exhibit also a selective down-modulation of the immune checkpoint TIM-3. Overall, our results provide evidence that combined epigenetic-immune drugs can overcome VEM resistance of primary melanoma cells by oncogenic and immune pathways reprogramming, and pave the way for rapidly exploiting this combination to improve BRAFi-resistant metastatic melanoma treatment, also via reinforcement of immune checkpoint inhibitor therapy.


Asunto(s)
Interferón Tipo I , Melanoma , Humanos , Vemurafenib/farmacología , Vemurafenib/uso terapéutico , Resistencia a Antineoplásicos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Línea Celular Tumoral
4.
Cells ; 12(7)2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37048121

RESUMEN

Dynamic reciprocity between cellular components of the tumor microenvironment and tumor cells occurs primarily through the interaction of soluble signals, i.e., cytokines produced by stromal cells to support cancer initiation and progression by regulating cell survival, differentiation and immune cell functionality, as well as cell migration and death. In the present study, we focused on the analysis of the functional response of non-small cell lung cancer cell lines elicited by the treatment with some crucial stromal factors which, at least in part, mimic the stimulus exerted in vivo on tumor cells by microenvironmental components. Our molecular and functional results highlight the role played by the autophagic machinery in the cellular response in terms of the invasive capacity, stemness and drug resistance of two non-small lung cancer cell lines treated with stromal cytokines, also highlighting the emerging role of the YAP pathway in the mutual and dynamic crosstalk between tumor cells and tumor microenvironment elements. The results of this study provide new insights into the YAP-mediated autophagic mechanism elicited by microenvironmental cytokines on non-small cell lung cancer cell lines and may suggest new potential strategies for future cancer therapeutic interventions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Microambiente Tumoral , Citocinas , Línea Celular Tumoral , Autofagia , Resistencia a Medicamentos
5.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35563024

RESUMEN

Adrenergic receptors (AR) belong to the G protein-coupled receptor superfamily and regulate migration and proliferation in various cell types. The objective of this study was to evaluate whether ß-AR stimulation affects the antiproliferative action of α2-AR agonists on B16F10 cells and, if so, to determine the relative contribution of ß-AR subtypes. Using pharmacological approaches, evaluation of Ki-67 expression by flow cytometry and luciferase-based cAMP assay, we found that treatment with isoproterenol, a ß-AR agonist, increased cAMP levels in B16F10 melanoma cells without affecting cell proliferation. Propranolol inhibited the cAMP response to isoproterenol. In addition, stimulation of α2-ARs with agonists such as clonidine, a well-known antihypertensive drug, decreased cancer cell proliferation. This effect on cell proliferation was suppressed by treatment with isoproterenol. In turn, the suppressive effects of isoproterenol were abolished by the treatment with either ICI 118,551, a ß2-AR antagonist, or propranolol, suggesting that isoproterenol effects are mainly mediated by the ß2-AR stimulation. We conclude that the crosstalk between the ß2-AR and α2-AR signaling pathways regulates the proliferative activity of B16F10 cells and may therefore represent a therapeutic target for melanoma therapy.


Asunto(s)
Melanoma , Receptores Adrenérgicos alfa 2 , Receptores Adrenérgicos beta 2 , Agonistas Adrenérgicos beta/farmacología , Línea Celular Tumoral , Proliferación Celular , Humanos , Isoproterenol/farmacología , Isoproterenol/uso terapéutico , Melanoma/metabolismo , Propranolol/farmacología , Propranolol/uso terapéutico , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 1 , Receptores Adrenérgicos beta 2/metabolismo
6.
Anticancer Res ; 42(2): 767-779, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35093875

RESUMEN

BACKGROUND/AIM: About 40% of patients with diffuse large cell lymphoma (DLBCL) still have a poor prognosis. Additionally, DLBCL patients treated with doxorubicin are at risk of cardiac failure. Growing evidence suggests an antitumor and cardioprotective activity exerted by estrogen via its binding to estrogen receptor (ER) ß. The aim of this study was to evaluate the anticancer activity of the phytoestrogen silibinin, an ERß selective agonist, on DLBCL growth, and its potential cardioprotective effect. MATERIALS AND METHODS: DLBCL cell lines SUDHL-8, SUDHL-6, and RIVA were used. The anti-tumor activity of silibinin was also evaluated in vivo in NOD/SCID/IL2Rg-/- (NSG) xenografted mice. AC16 human ventricular cardiomyocytes were used to investigate the cardioprotective effects of silibinin. RESULTS: In vitro silibinin induced apoptosis and autophagy, and blocked tumor cell proliferation, also protecting AC16 cardiomyocytes from doxorubicin-induced toxicity. In vivo silibinin induced cell death and autophagy, and reduced tumor volume. CONCLUSION: Silibinin represents a promising therapeutic tool.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Receptor beta de Estrógeno/agonistas , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Silibina/uso terapéutico , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Doxorrubicina/toxicidad , Humanos , Linfoma de Células B Grandes Difuso/patología , Ratones , Miocitos Cardíacos/efectos de los fármacos , Silibina/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Br J Pharmacol ; 179(7): 1371-1383, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34766341

RESUMEN

BACKGROUND AND PURPOSE: Recently, ß-adrenoceptor blockade has emerged as a potential strategy to inhibit melanoma growth. It remains to be ascertained whether ß-adrenoceptor stimulation by circulating catecholamines increases melanoma growth in mice. EXPERIMENTAL APPROACH: B16F10 melanoma-bearing mice were used to evaluate effects of adrenaline and specific adrenoceptor (AR) ligands on tumour volume. AR expression and effects of AR ligands on cell viability, production of mitochondrial reactive oxygen species (mROS), and proliferation activity in B16F10 cells, were determined by biochemical analyses. KEY RESULTS: Real-time polymerase chain reaction (qPCR) analyses revealed that B16F10 cells express α1B-, α2A-, α2B- and ß2-ARs. We found that treatment with the α- and ß-AR agonist adrenaline or with the synthetic catecholamine isoprenaline, which selectively stimulates ß-ARs, did not affect melanoma growth. Conversely, adrenaline reduced tumour growth in mice cotreated with propranolol, a ß1ß2-AR antagonist. Adrenaline had no effect in tumour-bearing ß1ß2-AR knockout mice, in which ß1- and ß2-ARs are lacking, but it reduced tumour growth when co-administered with propranolol suggesting that tumour ß2-ARs negatively regulate adrenaline antitumour activity. Additionally, we found that α1-AR stimulation with cirazoline yielded a decrease in B16F10 melanoma size. These effects on melanoma growth were paralleled by reduced cell viability and proliferation activity as well as increased mROS production in α1-AR-stimulated B16F10 cells. Decreased viability, proliferation and mitochondrial function in B16F10 cells also occurred after α2-AR stimulation by α2-AR agonist ST91. CONCLUSIONS AND IMPLICATIONS: In the B16F10 melanoma model, stimulation of α-AR subtypes yields in vivo and in vitro anticancer activity.


Asunto(s)
Melanoma , Receptores Adrenérgicos alfa 1 , Animales , Catecolaminas , Epinefrina/farmacología , Ligandos , Melanoma/metabolismo , Ratones , Ratones Noqueados , Propranolol/farmacología , Receptores Adrenérgicos alfa 1/metabolismo
8.
J Exp Clin Cancer Res ; 40(1): 347, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34740374

RESUMEN

BACKGROUND: Glioblastoma (GBM; grade IV glioma) is characterized by a very short overall survival time and extremely low 5-year survival rates. We intend to promote experimental and clinical research on rationale and scientifically driven drug repurposing. This may represent a safe and often inexpensive way to propose novel pharmacological approaches to GBM. Our precedent work describes the role of chlorpromazine (CPZ) in hindering malignant features of GBM. Here, we investigate in greater detail the molecular mechanisms at the basis of the effect of CPZ on GBM cells. METHODS: We employed proteomics platforms, i.e., activity-based protein profiling plus mass spectrometry, to identify potential cellular targets of the drug. Then, by means of established molecular and cellular biology techniques, we assessed the effects of this drug on GBM cell metabolic and survival pathways. RESULTS: The experimental output indicated as putative targets of CPZ several of factors implicated in endoplasmic reticulum (ER) stress, with consequent unfolded protein response (UPR). Such a perturbation culminated in a noticeable reactive oxygen species generation and intense autophagic response that resulted in cytotoxic and abortive effects for six GBM cell lines, three of which growing as neurospheres, while it appeared cytoprotective for the RPE-1 human non-cancer neuro-ectodermal cell line. CONCLUSIONS: This discrepancy could be central in explaining the lethal effects of the drug on GBM cells and the relatively scarce cytotoxicity toward normal tissues attributed to this compound. The data presented here offer support to the multicenter phase II clinical trial we have undertaken, which consists of the addition of CPZ to first-line treatment of GBM patients carrying a hypo- or un-methylated MGMT gene, i.e. those characterized by intrinsic resistance to temozolomide.


Asunto(s)
Autofagia/genética , Clorpromazina/uso terapéutico , Antagonistas de Dopamina/uso terapéutico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Respuesta de Proteína Desplegada/efectos de los fármacos , Clorpromazina/farmacología , Antagonistas de Dopamina/farmacología , Glioblastoma/mortalidad , Humanos , Análisis de Supervivencia
9.
Front Oncol ; 11: 635472, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718225

RESUMEN

The extremely poor prognosis of patients affected by glioblastoma (GBM, grade IV glioma) prompts the search for new and more effective therapies. In this regard, drug repurposing or repositioning can represent a safe, swift, and inexpensive way to bring novel pharmacological approaches from bench to bedside. Chlorpromazine, a medication used since six decades for the therapy of psychiatric disorders, shows in vitro several features that make it eligible for repositioning in cancer therapy. Using six GBM cell lines, three of which growing as patient-derived neurospheres and displaying stem-like properties, we found that chlorpromazine was able to inhibit viability in an apoptosis-independent way, induce hyperdiploidy, reduce cloning efficiency as well as neurosphere formation and downregulate the expression of stemness genes in all these cell lines. Notably, chlorpromazine synergized with temozolomide, the first-line therapeutic in GBM patients, in hindering GBM cell viability, and both drugs strongly cooperated in reducing cloning efficiency and inducing cell death in vitro for all the GBM cell lines assayed. These results prompted us to start a Phase II clinical trial on GBM patients (EudraCT # 2019-001988-75; ClinicalTrials.gov Identifier: NCT04224441) by adding chlorpromazine to temozolomide in the adjuvant phase of the standard first-line therapeutic protocol.

10.
Cancers (Basel) ; 13(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477952

RESUMEN

Human papillomavirus 16 (HPV16) exhibits a strong oncogenic potential mainly in cervical, anogenital and oropharyngeal cancers. The E6 and E7 viral oncoproteins, acting via specific interactions with host cellular targets, are required for cell transformation and maintenance of the transformed phenotype as well. We previously demonstrated that HPV16E7 interacts with the actin-binding protein gelsolin, involved in cytoskeletal F-actin dynamics. Herein, we provide evidence that the E7/gelsolin interaction promotes the cytoskeleton rearrangement leading to epithelial-mesenchymal transition-linked morphological and transcriptional changes. E7-mediated cytoskeletal actin remodeling induces the HIPPO pathway by promoting the cytoplasmic retention of inactive P-YAP. These results suggest that YAP could play a role in the "de-differentiation" process underlying the acquisition of a more aggressive phenotype in HPV16-transformed cells. A deeper comprehension of the multifaceted mechanisms elicited by the HPV infection is vital for providing novel strategies to block the biological and clinical features of virus-related cancers.

11.
Int J Mol Sci ; 21(2)2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947522

RESUMEN

Altered ß-adrenergic receptor (ß-AR) density has been reported in cells, animals, and humans receiving ß-blocker treatment. In some cases, ß-AR density is upregulated, but in others, it is unaffected or even reduced. Collectively, these results would imply that changes in ß-AR density and ß-blockade are not related. However, it has still not been clarified whether the effects of ß-blockers on receptor density are related to their ability to activate different ß-AR signaling pathways. To this aim, five clinically relevant ß-blockers endowed with inverse, partial or biased agonism at the ß2-AR were evaluated for their effects on ß2-AR density in both human embryonic kidney 293 (HEK293) cells expressing exogenous FLAG-tagged human ß2-ARs and human lymphocytes expressing endogenous ß2-ARs. Cell surface ß2-AR density was measured by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. Treatment with propranolol, carvedilol, pindolol, sotalol, or timolol did not induce any significant change in surface ß2-AR density in both HEK293 cells and human lymphocytes. On the contrary, treatment with the ß-AR agonist isoproterenol reduced the number of cell surface ß2-ARs in the tested cell types without affecting ß2-AR-mRNA levels. Isoproterenol-induced effects on receptor density were completely antagonized by ß-blocker treatment. In conclusion, the agonistic activity of ß-blockers does not exert an important effect on short-term regulation of ß2-AR density.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Antagonistas de Receptores Adrenérgicos beta 2/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular , Membrana Celular/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Humanos , Especificidad de Órganos
12.
Cell Death Dis ; 10(11): 828, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685808

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Cell Death Dis ; 10(9): 673, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511496

RESUMEN

Sex dimorphism in cell response to stress has previously been investigated by different research groups. This dimorphism could be at least in part accounted for by sex-biased expression of regulatory elements such as microRNAs (miRs). In order to spot previously unknown miR expression differences we took advantage of prior knowledge on specialized databases to identify X chromosome-encoded miRs potentially escaping X chromosome inactivation (XCI). MiR-548am-5p emerged as potentially XCI escaper and was experimentally verified to be significantly up-regulated in human XX primary dermal fibroblasts (DFs) compared to XY ones. Accordingly, miR-548am-5p target mRNAs, e.g. the transcript for Bax, was differently modulated in XX and XY DFs. Functional analyses indicated that XY DFs were more prone to mitochondria-mediated apoptosis than XX ones. Experimentally induced overexpression of miR548am-5p in XY cells by lentivirus vector transduction decreased apoptosis susceptibility, whereas its down-regulation in XX cells enhanced apoptosis susceptibility. These data indicate that this approach could be used to identify previously unreported sex-biased differences in miR expression and that a miR identified with this approach, miR548am-5p, can account for sex-dependent differences observed in the susceptibility to mitochondrial apoptosis of human DFs.


Asunto(s)
Apoptosis/genética , Cromosomas Humanos X/metabolismo , Fibroblastos/metabolismo , MicroARNs/metabolismo , Mitocondrias/genética , Adulto , Células Cultivadas , Bases de Datos Genéticas , Regulación hacia Abajo/genética , Femenino , Genes Ligados a X , Humanos , Masculino , MicroARNs/genética , Mitocondrias/metabolismo , Caracteres Sexuales , Regulación hacia Arriba/genética
14.
J Cell Physiol ; 234(12): 22529-22542, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31099037

RESUMEN

The small molecule SI113 is an inhibitor of the kinase activity of SGK1, a key biological regulator acting on the PI3K/mTOR signal transduction pathway. Several studies demonstrate that this compound is able to strongly restrain cancer growth in vitro and in vivo, alone or in associative antineoplastic treatments, being able to elicit an autophagic response, either cytotoxic or cytoprotective. To elucidate more exhaustively the molecular mechanisms targeted by SI113, we performed activity-based protein profiling (ABPP) proteomic analysis using a kinase enrichment procedure. This technique allowed the identification via mass spectrometry of novel targets of this compound, most of them involved in functions concerning cell motility and cytoskeletal architecture. Using a glioblastoma multiforme, hepatocarcinoma and colorectal carcinoma cell line, we recognized an inhibitory effect of SI113 on cell migration, invading, and epithelial-to-mesenchymal transition. In addition, these cancer cells, when exposed to this compound, showed a remarkable subversion of the cytoskeletal architecture characterized by F-actin destabilization, phospho-FAK delocalization, and tubulin depolimerization. These results were definitely concordant in attributing to SI113 a key role in hindering cancer cell malignancy and, due to its negligible in vivo toxicity, can sustain performing a Phase I clinical trial to employ this drug in associative cancer therapy.


Asunto(s)
Citoesqueleto/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Pirazoles/farmacología , Pirimidinas/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Movimiento Celular , Humanos , Invasividad Neoplásica
15.
J Cell Physiol ; 234(11): 20453-20468, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30982981

RESUMEN

Cardiac dysfunction is often observed in patients with cancer also representing a serious problem limiting chemotherapeutic intervention and even patient survival. In view of the recently established role of the immune system in the control of cancer growth, the present work has been undertaken to investigate the effects of a panel of the most important inflammatory cytokines on the integrity and function of mitochondria, as well as of the cytoskeleton, two key elements in the functioning of cardiomyocytes. Either mitochondria features or actomyosin cytoskeleton organization of in vitro-cultured cardiomyocytes treated with different inflammatory cytokines were analyzed. In addition, to investigate the interplay between tumor growth and cardiac function in an in vivo system, immunocompetent female mice were inoculated with cancer cells and treated with the chemotherapeutic drug doxorubicin at a dosing schedule able to suppress tumor growth without inducing cardiac alterations. Analyses carried out in cardiomyocytes treated with the inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interferon γ (IFN-γ), interleukin 6 (IL-6), IL-8, and IL-1ß revealed severe phenotypic changes, for example, of contractile cytoskeletal elements, mitochondrial membrane potential, mitochondrial reactive oxygen species production and mitochondria network organization. Accordingly, in immunocompetent mice, the tumor growth was accompanied by increased levels of the inflammatory cytokines TNF-α, IFN-γ, IL-6, and IL-8, either in serum or in the heart tissue, together with a significant reduction of ventricular systolic function. The alterations of mitochondria and of microfilament system of cardiomyocytes, due to the systemic inflammation associated with cancer growth, could be responsible for remote cardiac injury and impairment of systolic function observed in vivo.


Asunto(s)
Citocinas/farmacología , Citoesqueleto/efectos de los fármacos , Inflamación/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Animales , Células Cultivadas , Femenino , Interferón gamma/farmacología , Interleucina-6/farmacología , Ratones Endogámicos BALB C , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
16.
Cell Death Dis ; 9(8): 841, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30082680

RESUMEN

The role of autophagy in cancer onset and progression appears still controversial. On one hand, autophagy allows cancer cell to survive in unfavorable environmental conditions, on the other hand, once internal energy resources are exhausted, it leads to cell death. In addition, autophagy interpheres with cell cycle progression, de facto exerting a cytostatic activity. Hence, it represents an important target for anticancer therapy. For example, temozolomide (TMZ), of use for glioblastoma (GBM) treatment, appears as capable of inducing autophagy partially inhibiting cancer cell proliferation. However, GBM, a very aggressive brain tumor with poor prognosis even after surgery and radio-chemotherapy, invariably recurs and leads to patient death. Since cancer stem cells have been hypothesized to play a role in refractory/relapsing cancers, in the present work we investigated if autophagy could represent a constitutive cytoprotection mechanism for glioblastoma stem-like cells (GSCs) and if the modulation of autophagic process could affect GBM growth and survival. Thus, in the present study we first evaluated the relevance of autophagy in GBM tumor specimens, then its occurrence in GSCs and, finally, if modulation of autophagy could influence GSC response to TMZ. Our results suggested that, in vitro, the impairing autophagic process with quinacrine, a compound able to cross the blood-brain barrier, increased GSC susceptibility to TMZ. Death of GSCs was apparently due to the iron dependent form of programmed cell death characterized by the accumulation of lipid peroxides called ferroptosis. These results underscore the relevance of the modulation of autophagy in the GSC survival and death and suggest that triggering of ferroptosis in GSCs could represent a novel and important target for the management of glioblastoma.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias Encefálicas/patología , Glioblastoma/patología , Temozolomida/farmacología , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/mortalidad , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/mortalidad , Humanos , Estimación de Kaplan-Meier , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas Asociadas a Microtúbulos/metabolismo , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Quinacrina/farmacología , Quinacrina/uso terapéutico , Proteína Sequestosoma-1/metabolismo , Temozolomida/uso terapéutico , Trasplante Heterólogo
17.
Adv Exp Med Biol ; 1065: 241-256, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30051389

RESUMEN

The focus of this chapter is the gender differences in mitochondria in cardiovascular disease. There is broad evidence suggesting that some of the gender differences in cardiovascular outcome may be partially related to differences in mitochondrial biology (Ventura-Clapier R, Moulin M, Piquereau J, Lemaire C, Mericskay M, Veksler V, Garnier A, Clin Sci (Lond) 131(9):803-822, 2017)). Mitochondrial disorders are causally affected by mutations in either nuclear or mitochondrial genes involved in the synthesis of respiratory chain subunits or in their posttranslational control. This can be due to mutations of the mtDNA which are transmitted by the mother or mutations in the nuclear DNA. Because natural selection on mitochondria operates only in females, mutations may have had more deleterious effects in males than in females (Ventura-Clapier R, Moulin M, Piquereau J, Lemaire C, Mericskay M, Veksler V, Garnier A, Clin Sci (Lond) 131(9):803-822, 2017; Camara AK, Lesnefsky EJ, Stowe DF. Antioxid Redox Signal 13(3):279-347, 2010). As mitochondrial mutations can affect all tissues, they are responsible for a large panel of pathologies including neuromuscular disorders, encephalopathies, metabolic disorders, cardiomyopathies, neuropathies, renal dysfunction, etc. Many of these pathologies present sex/gender specificity. Thus, alleviating or preventing mitochondrial dysfunction will contribute to mitigating the severity or progression of the development of diseases. Here, we present evidence for the involvement of mitochondria in the sex specificity of cardiovascular disorders.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Disparidades en el Estado de Salud , Corazón/fisiopatología , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Animales , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/patología , Femenino , Humanos , Masculino , Mitocondrias Cardíacas/patología , Miocardio/patología , Factores de Riesgo , Caracteres Sexuales , Factores Sexuales , Transducción de Señal
18.
Cell Death Dis ; 9(2): 112, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29371600

RESUMEN

The incidence of malignant melanoma has continued to rise during the past decades. However, in the last few years, treatment protocols have significantly been improved thanks to a better understanding of the key oncogenes and signaling pathways involved in its pathogenesis and progression. Anticancer therapy would either kill tumor cells by triggering apoptosis or permanently arrest them in the G1 phase of the cell cycle. Unfortunately, melanoma is often refractory to commonly used anticancer drugs. More recently, however, some new anticancer strategies have been developed that are "external" to cancer cells, for example stimulating the immune system's response or inhibiting angiogenesis. In fact, the increasing knowledge of melanoma pathogenetic mechanisms, in particular the discovery of genetic mutations activating specific oncogenes, stimulated the development of molecularly targeted therapies, a form of treatment in which a drug (chemical or biological) is developed with the goal of exclusively destroying cancer cells by interfering with specific molecules that drive growth and spreading of the tumor. Again, after the initial exciting results associated with targeted therapy, tumor resistance and/or relapse of the melanoma lesion have been observed. Hence, very recently, new therapeutic strategies based on the modulation of the immune system function have been developed. Since cancer cells are known to be capable of evading immune-mediated surveillance, i.e., to block the immune system cell activity, a series of molecular strategies, including monoclonal antibodies, have been developed in order to "release the brakes" on the immune system igniting immune reactivation and hindering metastatic melanoma cell growth. In this review we analyze the various biological strategies underlying conventional chemotherapy as well as the most recently developed targeted therapies and immunotherapies, pointing at the molecular mechanisms of cell injury and death engaged by the different classes of therapeutic agents.


Asunto(s)
Apoptosis , Melanoma/patología , Melanoma/terapia , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Epigénesis Genética , Humanos , Inmunoterapia , Melanoma/genética , Melanoma/inmunología , Terapia Molecular Dirigida
19.
Stem Cells Int ; 2017: 4790563, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29104594

RESUMEN

Adult cardiac progenitor cells (CPCs), isolated as cardiosphere-derived cells (CDCs), represent promising candidates for cardiac regenerative therapy. CDCs can be expanded in vitro manyfolds without losing their differentiation potential, reaching numbers that are appropriate for clinical applications. Since mechanisms of successful CDC survival and engraftment in the damaged myocardium are still critical and unresolved issues, we aimed at deciphering possible key factors capable of bolstering CDC function. In particular, the response and the phenotype of CDCs exposed to low concentrations of the multifunctional cytokine tumor necrosis factor α (TNF-α), known to be capable of activating cell survival pathways, have been investigated. Furthermore, differential biological responses of CDCs from male and female donors, in terms of cell cycle progression and cell spreading, have also been assessed. The results obtained indicate that (i) the intracellular signaling activated in our experimental conditions is most likely due to the prosurvival and proliferative signaling of TNF-α receptor 2 and that (ii) cells from female patients appear more responsive to TNF-α treatment in terms of cell cycle progression and migration ability. In conclusion, the present report highlights the hypothesis that TNF-stimulated CDCs isolated from females may represent a promising candidate for cardiac regenerative therapy applications.

20.
Oncotarget ; 8(5): 8522-8535, 2017 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-28052027

RESUMEN

Although Hodgkin lymphoma (HL) is curable with current therapy, at least 20% of patients relapse or fail to make complete remission. In addition, patients who achieve long-term disease-free survival frequently undergo infertility, secondary malignancies, and cardiac failure, which are related to chemotherapeutic agents and radiation therapies. Hence, new therapeutic strategies able to counteract the HL disease in this important patient population are still a matter of study. Estrogens, in particular 17ß-estradiol (E2), have been suggested to play a role in lymphoma cell homeostasis by estrogen receptors (ER) ß activation. On these bases, we investigated whether the ligation of ERß by a selective agonist, the 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), could impact HL tumor growth. We found that DPN-mediated ERß activation led to a reduction of in vitro cell proliferation and cell cycle progression by inducing autophagy. In nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice engrafted with HL cells, ERß activation by DPN was able to reduce lymphoma growth up to 60% and this associated with the induction of tumor cell autophagy. Molecular characterization of ERß-induced autophagy revealed an overexpression of damage-regulated autophagy modulator 2 (DRAM2) molecule, whose role in autophagy modulation is still debated. After ERß activation, both DRAM2 and protein 1 light chain 3 (LC3), a key actor in the autophagosome formation, strictly interacted each other and localized at mitochondrial level.Altogether these results suggest that targeting ERß with selective agonists might affect HL cell proliferation and tumor growth via a mechanism that brings into play DRAM2-dependent autophagic cascade.


Asunto(s)
Autofagia/efectos de los fármacos , Receptor beta de Estrógeno/agonistas , Enfermedad de Hodgkin/tratamiento farmacológico , Nitrilos/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/metabolismo , Enfermedad de Hodgkin/patología , Humanos , Ligandos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Proteínas Asociadas a Microtúbulos/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...