Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(24): 9324-9334, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37276356

RESUMEN

We report the effect of substitution of Ru by Ta in Sr2YbRuO6 on its magnetic and photoelectrocatalytic properties. The powder X-ray diffraction data, was satisfactorily refined in the monoclinic space group, P21/n. The DC magnetization studies indicated that Sr2YbRuO6 shows antiferromagnetic interaction through Yb-O-Ru orbital ordering, with the highest Weiss temperature, among Sr2YbRu1-xTaxO6 (x = 0, 0.25, 0.5, and 0.75) which have values of -148, -125, -118, and -102 K, respectively. The difference in observed and theoretical magnetic moments was found to increase as x increases. It was also observed that with the increase of Ta concentration in Sr2YbRu1-xTaxO6, the band gap increased almost linearly, from 1.78(1) eV (x = 0) to 2.08(1) (x = 0.75), and thereafter a sharp increase 2.65(1) eV (x = 1) was observed, with the lowering of energy level of valence band, along with disruption in orbital ordering as x increases. The photoelectrocatalytic oxygen evolution reaction (OER) studies carried out on the series yield a maximum photocurrent density of 17 µA/cm2 and photoresponse current of 5.5 µA/cm2 at 0.8 V at an onset potential at 0.29 V vs Ag/AgCl for Sr2YbRuO6. The XPS analysis showed Ta and Ru to be in +5/+4 oxidation states, with the highest concentration of Ru4+ ion observed for Sr2YbRuO6. The presence of oxygen vacancies was confirmed by XPS as well as EPR studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...