Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Virol ; 97(12): e0114923, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37966226

RESUMEN

IMPORTANCE: The parasitic mite Varroa destructor is a significant driver of worldwide colony losses of our most important commercial pollinator, the Western honey bee Apis mellifera. Declines in honey bee health are frequently attributed to the viruses that mites vector to honey bees, yet whether mites passively transmit viruses as a mechanical vector or actively participate in viral amplification and facilitate replication of honey bee viruses is debated. Our work investigating the antiviral RNA interference response in V. destructor demonstrates that key viruses associated with honey bee declines actively replicate in mites, indicating that they are biological vectors, and the host range of bee-associated viruses extends to their parasites, which could impact virus evolution, pathogenicity, and spread.


Asunto(s)
Abejas , Vectores de Enfermedades , Especificidad del Huésped , Parásitos , Varroidae , Replicación Viral , Virus , Animales , Abejas/parasitología , Abejas/virología , Parásitos/fisiología , Parásitos/virología , Varroidae/fisiología , Varroidae/virología , Virus/crecimiento & desarrollo , Virus/patogenicidad , Interferencia de ARN
2.
iScience ; 25(12): 105573, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36465130

RESUMEN

Mitochondrial health is crucial to sperm quality and male fertility, but the precise role of mitochondria in sperm function remains unclear. SDHA is a component of the succinate dehydrogenase (SDH) complex and plays a critical role in mitochondria. In humans, SDH activity is positively correlated with sperm quality, and mutations in SDHA are associated with Leigh Syndrome. Here we report that the C. elegans SDHA orthologue SDHA-2 is essential for male fertility: sdha-2 mutants produce dramatically fewer offspring due to defective sperm activation and motility, have hyperfused sperm mitochondria, and disrupted redox balance. Similar sperm motility defects in sdha-1 and icl-1 mutant animals suggest an imbalance in metabolites may underlie the fertility defect. Our results demonstrate a role for SDHA-2 in sperm motility and male reproductive health and establish an animal model of SDH deficiency-associated infertility.

3.
BMC Genomics ; 23(1): 257, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379185

RESUMEN

BACKGROUND: Polyandrous social insects such as the honey bee are prime candidates for parental manipulation of gene expression in offspring. Although there is good evidence for parent-of-origin effects in honey bees the epigenetic mechanisms that underlie these effects remain a mystery. Small RNA molecules such as miRNAs, piRNAs and siRNAs play important roles in transgenerational epigenetic inheritance and in the regulation of gene expression during development. RESULTS: Here we present the first characterisation of small RNAs present in honey bee reproductive tissues: ovaries, spermatheca, semen, fertilised and unfertilised eggs, and testes. We show that semen contains fewer piRNAs relative to eggs and ovaries, and that piRNAs and miRNAs which map antisense to genes involved in DNA regulation and developmental processes are differentially expressed between tissues. tRNA fragments are highly abundant in semen and have a similar profile to those seen in the semen of other animals. Intriguingly we also find abundant piRNAs that target the sex determination locus, suggesting that piRNAs may play a role in honey bee sex determination. CONCLUSIONS: We conclude that small RNAs may play a fundamental role in honey bee gametogenesis and reproduction and provide a plausible mechanism for parent-of-origin effects on gene expression and reproductive physiology.


Asunto(s)
MicroARNs , Animales , Abejas/genética , Epigénesis Genética , MicroARNs/genética , Reproducción/genética
4.
Philos Trans R Soc Lond B Biol Sci ; 376(1826): 20200111, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33866814

RESUMEN

Epigenetics is the study of changes in gene activity that can be transmitted through cell divisions but cannot be explained by changes in the DNA sequence. Epigenetic mechanisms are central to gene regulation, phenotypic plasticity, development and the preservation of genome integrity. Epigenetic mechanisms are often held to make a minor contribution to evolutionary change because epigenetic states are typically erased and reset at every generation, and are therefore, not heritable. Nonetheless, there is growing appreciation that epigenetic variation makes direct and indirect contributions to evolutionary processes. First, some epigenetic states are transmitted intergenerationally and affect the phenotype of offspring. Moreover, bona fide heritable 'epialleles' exist and are quite common in plants. Such epialleles could, therefore, be subject to natural selection in the same way as conventional DNA sequence-based alleles. Second, epigenetic variation enhances phenotypic plasticity and phenotypic variance and thus can modulate the effect of natural selection on sequence-based genetic variation. Third, given that phenotypic plasticity is central to the adaptability of organisms, epigenetic mechanisms that generate plasticity and acclimation are important to consider in evolutionary theory. Fourth, some genes are under selection to be 'imprinted' identifying the sex of the parent from which they were derived, leading to parent-of-origin-dependent gene expression and effects. These effects can generate hybrid disfunction and contribute to speciation. Finally, epigenetic processes, particularly DNA methylation, contribute directly to DNA sequence evolution, because they act as mutagens on the one hand and modulate genome stability on the other by keeping transposable elements in check. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'


Asunto(s)
Adaptación Biológica , Evolución Biológica , Epigénesis Genética , Fenotipo
5.
Philos Trans R Soc Lond B Biol Sci ; 376(1826): 20200112, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33866817

RESUMEN

For decades, it was thought that the only heritable information transmitted from one individual to another was that encoded in the DNA sequence. However, it has become increasingly clear that this is not the case and that the transmission of molecules from within the cytoplasm of the gamete also plays a significant role in heritability. The roundworm, Caenorhabditis elegans, has emerged as one of the leading model organisms in which to study the mechanisms of transgenerational epigenetic inheritance (TEI). Collaborative efforts over the past few years have revealed that RNA molecules play a critical role in transmitting transgenerational responses, but precisely how they do so is as yet uncertain. In addition, the role of histone modifications in epigenetic inheritance is increasingly apparent, and RNA and histones interact in a way that we do not yet fully understand. Furthermore, both exogenous and endogenous RNA molecules, as well as other environmental triggers, are able to induce heritable epigenetic changes that affect transcription across the genome. In most cases, these epigenetic changes last only for a handful of generations, but occasionally can be maintained much longer: perhaps indefinitely. In this review, we discuss the current understanding of the role of RNA and histones in TEI, as well as making clear the gaps in our knowledge. We also speculate on the evolutionary implications of epigenetic inheritance, particularly in the context of a short-lived, clonally propagating species. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'


Asunto(s)
Caenorhabditis elegans/genética , Cromatina/genética , Epigénesis Genética , MicroARNs/genética , ARN de Helminto/genética , Animales
6.
Biochem Soc Trans ; 48(3): 1019-1034, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32539084

RESUMEN

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Histonas/metabolismo , Animales , Cromatina/genética , Cromatina/metabolismo , Silenciador del Gen , Histona Metiltransferasas/metabolismo , Histonas/genética , Interferencia de ARN , ARN Pequeño no Traducido/metabolismo
7.
Mol Ecol ; 29(8): 1523-1533, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32220095

RESUMEN

The Kinship Theory of Genomic Imprinting (KTGI) posits that, in species where females mate with multiple males, there is selection for a male to enhance the reproductive success of his offspring at the expense of other males and his mating partner. Reciprocal crosses between honey bee subspecies show parent-of-origin effects for reproductive traits, suggesting that males modify the expression of genes related to female function in their female offspring. This effect is likely to be greater in the Cape honey bee (Apis mellifera capensis), because a male's daughters have the unique ability to produce female offspring that can develop into reproductive workers or the next queen without mating. We generated reciprocal crosses between Capensis and another subspecies and used RNA-seq to identify transcripts that are over- or underexpressed in the embryos, depending on the parental origin of the gene. As predicted, 21 genes showed expression bias towards the Capensis father's allele in colonies with a Capensis father, with no such bias in the reciprocal cross. A further six genes showed a consistent bias towards expression of the father's allele across all eight colonies examined, regardless of the direction of the cross. Consistent with predictions of the KTGI, six of the 21 genes are associated with female reproduction. No gene consistently showed overexpression of the maternal allele.


Asunto(s)
Impresión Genómica , Reproducción , Alelos , Animales , Abejas/genética , Femenino , Expresión Génica , Masculino , Fenotipo
8.
Epigenet Insights ; 12: 2516865719844214, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31020270

RESUMEN

It is now clear that heredity is not determined purely by Mendelian genetic inheritance; sometimes, epigenetic signals can be passed from parent to progeny for multiple generations. This phenomenon is termed transgenerational epigenetic inheritance (TEI), and examples have now been observed in multiple organisms including plants, flies, mice, and nematodes. Here we discuss the recent findings that TEI is a multi-step process and that the putative chromatin modifiers SET-25 and SET-32 are important in the establishment but not maintenance of silencing.

9.
Cell Rep ; 25(8): 2259-2272.e5, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30463020

RESUMEN

Some epigenetic modifications are inherited from one generation to the next, providing a potential mechanism for the inheritance of environmentally acquired traits. Transgenerational inheritance of RNAi phenotypes in Caenorhabditis elegans provides an excellent model to study this phenomenon, and although studies have implicated both chromatin modifications and small RNA pathways in heritable silencing, their relative contributions remain unclear. Here, we demonstrate that the putative histone methyltransferases SET-25 and SET-32 are required for establishment of a transgenerational silencing signal but not for long-term maintenance of this signal between subsequent generations, suggesting that transgenerational epigenetic inheritance is a multi-step process with distinct genetic requirements for establishment and maintenance of heritable silencing. Furthermore, small RNA sequencing reveals that the abundance of secondary siRNAs (thought to be the effector molecules of heritable silencing) does not correlate with silencing phenotypes. Together, our results suggest that the current mechanistic models of epigenetic inheritance are incomplete.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Cromatina/metabolismo , Epigénesis Genética , Histona Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Patrón de Herencia/genética , Animales , Caenorhabditis elegans/embriología , Silenciador del Gen , Células Germinativas/metabolismo , Histonas/metabolismo , Longevidad , Lisina/metabolismo , Masculino , Metilación , Modelos Genéticos , Mutación/genética , Fenotipo , ARN/metabolismo , ARN Interferente Pequeño/metabolismo , Espermatozoides/metabolismo
10.
J Virol ; 91(16)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28515299

RESUMEN

Understanding the diversity and consequences of viruses present in honey bees is critical for maintaining pollinator health and managing the spread of disease. The viral landscape of honey bees (Apis mellifera) has changed dramatically since the emergence of the parasitic mite Varroa destructor, which increased the spread of virulent variants of viruses such as deformed wing virus. Previous genomic studies have focused on colonies suffering from infections by Varroa and virulent viruses, which could mask other viral species present in honey bees, resulting in a distorted view of viral diversity. To capture the viral diversity within colonies that are exposed to mites but do not suffer the ultimate consequences of the infestation, we examined populations of honey bees that have evolved naturally or have been selected for resistance to Varroa This analysis revealed seven novel viruses isolated from honey bees sampled globally, including the first identification of negative-sense RNA viruses in honey bees. Notably, two rhabdoviruses were present in three geographically diverse locations and were also present in Varroa mites parasitizing the bees. To characterize the antiviral response, we performed deep sequencing of small RNA populations in honey bees and mites. This provided evidence of a Dicer-mediated immune response in honey bees, while the viral small RNA profile in Varroa mites was novel and distinct from the response observed in bees. Overall, we show that viral diversity in honey bee colonies is greater than previously thought, which encourages additional studies of the bee virome on a global scale and which may ultimately improve disease management.IMPORTANCE Honey bee populations have become increasingly susceptible to colony losses due to pathogenic viruses spread by parasitic Varroa mites. To date, 24 viruses have been described in honey bees, with most belonging to the order Picornavirales Collapsing Varroa-infected colonies are often overwhelmed with high levels of picornaviruses. To examine the underlying viral diversity in honey bees, we employed viral metatranscriptomics analyses on three geographically diverse Varroa-resistant populations from Europe, Africa, and the Pacific. We describe seven novel viruses from a range of diverse viral families, including two viruses that are present in all three locations. In honey bees, small RNA sequences indicate that these viruses are processed by Dicer and the RNA interference pathway, whereas Varroa mites produce strikingly novel small RNA patterns. This work increases the number and diversity of known honey bee viruses and will ultimately contribute to improved disease management in our most important agricultural pollinator.


Asunto(s)
Abejas/virología , Biodiversidad , Variación Genética , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Animales , Abejas/parasitología , Virus ARN/genética , Varroidae/virología
11.
BMC Genomics ; 17: 226, 2016 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-26969617

RESUMEN

BACKGROUND: Intersexual genomic conflict sometimes leads to unequal expression of paternal and maternal alleles in offspring, resulting in parent-of-origin effects. In honey bees reciprocal crosses can show strong parent-of-origin effects, supporting theoretical predictions that genomic imprinting occurs in this species. Mechanisms behind imprinting in honey bees are unclear but differential DNA methylation in eggs and sperm suggests that DNA methylation could be involved. Nonetheless, because DNA methylation is multifunctional, it is difficult to separate imprinting from other roles of methylation. Here we use a novel approach to investigate parent-of-origin DNA methylation in honey bees. In the subspecies Apis mellifera capensis, reproduction of females occurs either sexually by fertilization of eggs with sperm, or via thelytokous parthenogenesis, producing female embryos derived from two maternal genomes. RESULTS: We compared genome-wide methylation patterns of sexually-produced, diploid embryos laid by a queen, with parthenogenetically-produced diploid embryos laid by her daughters. Thelytokous embryos inheriting two maternal genomes had fewer hypermethylated genes compared to fertilized embryos, supporting the prediction that fertilized embryos have increased methylation due to inheritance of a paternal genome. However, bisulfite PCR and sequencing of a differentially methylated gene, Stan (GB18207) showed strong allele-specific methylation that was maintained in both fertilized and thelytokous embryos. For this gene, methylation was associated with haplotype, not parent of origin. CONCLUSIONS: The results of our study are consistent with predictions from the kin theory of genomic imprinting. However, our demonstration of allele-specific methylation based on sequence shows that genome-wide differential methylation studies can potentially confound imprinting and allele-specific methylation. It further suggests that methylation patterns are heritable or that specific sequence motifs are targets for methylation in some genes.


Asunto(s)
Abejas/genética , Metilación de ADN , Genoma de los Insectos , Impresión Genómica , Alelos , Animales , Islas de CpG , Femenino , Haplotipos , Masculino , Partenogénesis
12.
J Virol ; 89(23): 12035-46, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26401037

RESUMEN

UNLABELLED: Antiviral RNA-mediated silencing (RNA interference [RNAi]) acts as a powerful innate immunity defense in plants, invertebrates, and mammals. In Caenorhabditis elegans, RNAi is systemic; i.e., RNAi silencing signals can move between cells and tissues. Furthermore, RNAi effects can be inherited transgenerationally and may last for many generations. Neither the biological relevance of systemic RNAi nor transgenerational RNAi is currently understood. Here we examined the role of both pathways in the protection of C. elegans from viral infection. We studied the Orsay virus, a positive-strand RNA virus related to Nodaviridae and the first and only virus known to infect C. elegans. Immunity to Orsay virus infection requires the RNAi pathway. Surprisingly, we found that genes required for systemic or transgenerational RNAi did not have a role in antiviral defense. Furthermore, we found that Orsay virus infection did not elicit a systemic RNAi response even when a target for RNAi was provided by using transgenes. Finally, we show that viral siRNAs, the effectors of RNAi, are not inherited to a level that provides any significant resistance to viral infection in the next generation. We conclude that systemic or transgenerational RNAi does not play a role in the defense against natural Orsay virus infection. Furthermore, our data suggest that there is a qualitative difference between experimental RNAi and antiviral RNAi. Our data are consistent with a model of systemic and transgenerational RNAi that requires a nuclear or germ line component that is lacking in almost all RNA virus infections. IMPORTANCE: Since its discovery in Caenorhabditis elegans, RNAi has proven a valuable scientific tool in many organisms. In C. elegans, exogenous RNAi spreads throughout the organism and can be passed between generations; however, there has been controversy as to the endogenous role(s) that the RNAi pathway plays. One endogenous role for which spreading both within the infected organism and between generations would be advantageous is a role in viral defense. In plants, antiviral RNAi is systemic and the spread of RNAi between cells provides protection against subsequent viral infection. Here we investigated this by using the only naturally occurring virus known to infect C. elegans, Orsay virus, and surprisingly found that, in contrast to the exogenous RNAi pathway, the antiviral RNAi response targeted against this virus does not spread systemically throughout the organism and cannot be passed between generations. These results suggest that there are differences between the two pathways that remain to be discovered.


Asunto(s)
Caenorhabditis elegans/virología , Inmunidad Innata/inmunología , Patrón de Herencia/inmunología , Modelos Inmunológicos , Nodaviridae/inmunología , Interferencia de ARN/inmunología , Animales , Secuencia de Bases , Caenorhabditis elegans/inmunología , Análisis por Micromatrices , Datos de Secuencia Molecular , Análisis de Secuencia de ARN
13.
Elife ; 2: e00994, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24137537

RESUMEN

RNA interference defends against viral infection in plant and animal cells. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model of host-virus interaction. Using a genome-wide association study in C. elegans wild populations and quantitative trait locus mapping, we identify a 159 base-pair deletion in the conserved drh-1 gene (encoding a RIG-I-like helicase) as a major determinant of viral sensitivity. We show that DRH-1 is required for the initiation of an antiviral RNAi pathway and the generation of virus-derived siRNAs (viRNAs). In mammals, RIG-I-domain containing proteins trigger an interferon-based innate immunity pathway in response to RNA virus infection. Our work in C. elegans demonstrates that the RIG-I domain has an ancient role in viral recognition. We propose that RIG-I acts as modular viral recognition factor that couples viral recognition to different effector pathways including RNAi and interferon responses. DOI:http://dx.doi.org/10.7554/eLife.00994.001.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Eliminación de Gen , Virus de Plantas/fisiología , Polimorfismo Genético , ARN Viral/genética , Animales , Caenorhabditis elegans/inmunología , Caenorhabditis elegans/virología , Virus de Plantas/genética , Sitios de Carácter Cuantitativo
14.
Genome Biol ; 14(9): R96, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24025402

RESUMEN

BACKGROUND: We have used a sensitized ENU mutagenesis screen to produce mouse lines that carry mutations in genes required for epigenetic regulation. We call these lines Modifiers of murine metastable epialleles (Mommes). RESULTS: We report a basic molecular and phenotypic characterization for twenty of the Momme mouse lines, and in each case we also identify the causative mutation. Three of the lines carry a mutation in a novel epigenetic modifier, Rearranged L-myc fusion (Rlf), and one gene, Rap-interacting factor 1 (Rif1), has not previously been reported to be involved in transcriptional regulation in mammals. Many of the other lines are novel alleles of known epigenetic regulators. For two genes, Rlf and Widely-interspaced zinc finger (Wiz), we describe the first mouse mutants. All of the Momme mutants show some degree of homozygous embryonic lethality, emphasizing the importance of epigenetic processes. The penetrance of lethality is incomplete in a number of cases. Similarly ,abnormalities in phenotype seen in the heterozygous individuals of some lines occur with incomplete penetrance. CONCLUSIONS: Recent advances in sequencing enhance the power of sensitized mutagenesis screens to identify the function of previously uncharacterized factors and to discover additional functions for previously characterized proteins. The observation of incomplete penetrance of phenotypes in these inbred mutant mice, at various stages of development, is of interest. Overall, the Momme collection of mouse mutants provides a valuable resource for researchers across many disciplines.


Asunto(s)
Epigénesis Genética , Etilnitrosourea/farmacología , Genes Letales , Mutagénesis , Mutágenos/farmacología , Mutación/efectos de los fármacos , Alelos , Animales , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genotipo , Factores de Intercambio de Guanina Nucleótido , Heterocigoto , Homocigoto , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Proteínas del Tejido Nervioso/genética , Fenotipo , Proteínas de Unión a Telómeros/genética , Factores de Transcripción/genética
15.
Genome Res ; 23(8): 1258-70, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23811144

RESUMEN

Positive-strand RNA viruses encompass more than one-third of known virus genera and include many medically and agriculturally relevant human, animal, and plant pathogens. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model to understand the mechanisms and evolution of innate immune responses. In particular, the RNA interference (RNAi) pathway is required for C. elegans resistance to viral infection. Here we report the first genome-wide analyses of gene expression upon viral infection in C. elegans. Using the laboratory strain N2, we identify a novel C. elegans innate immune response specific to viral infection. A subset of these changes is driven by the RNAi response to the virus, which redirects the Argonaute protein RDE-1 from its endogenous small RNA cofactors, leading to loss of repression of endogenous RDE-1 targets. Additionally, we show that a C. elegans wild isolate, JU1580, has a distinct gene expression signature in response to viral infection. This is associated with a reduction in microRNA (miRNA) levels and an up-regulation of their target genes. Intriguingly, alterations in miRNA levels upon JU1580 infection are associated with a transformation of the antiviral transcriptional response into an antibacterial-like response. Together our data support a model whereby antiviral RNAi competes with endogenous small RNA pathways, causing widespread transcriptional changes. This provides an elegant mechanism for C. elegans to orchestrate its antiviral response, which may have significance for the relationship between small RNA pathways and immune regulation in other organisms.


Asunto(s)
Caenorhabditis elegans/genética , Nodaviridae/genética , Interferencia de ARN , ARN Viral/genética , Animales , Caenorhabditis elegans/inmunología , Caenorhabditis elegans/virología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ontología de Genes , Genoma de los Helmintos , Interacciones Huésped-Patógeno , Inmunidad Innata/genética , MicroARNs/genética , MicroARNs/metabolismo , Familia de Multigenes , Transcriptoma , Regulación hacia Arriba
16.
Mamm Genome ; 24(5-6): 206-17, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23636699

RESUMEN

Observations of inherited phenotypes that cannot be explained solely through genetic inheritance are increasing. Evidence points to transmission of non-DNA molecules in the gamete as mediators of the phenotypes. However, in most cases it is unclear what the molecules are, with DNA methylation, chromatin proteins, and small RNAs being the most prominent candidates. From a screen to generate novel mouse mutants of genes involved in epigenetic reprogramming, we produced a DNA methyltransferase 3b allele that is missing exon 13. Mice that are homozygous for the mutant allele have smaller stature and reduced viability, with particularly high levels of female post-natal death. Reduced DNA methylation was also detected at telocentric repeats and the X-linked Hprt gene. However, none of the abnormal phenotypes or DNA methylation changes worsened with multiple generations of homozygous mutant inbreeding. This suggests that in our model the abnormalities are reset each generation and the processes of transgenerational epigenetic reprogramming are effective in preventing their inheritance.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Ratones/genética , Alelos , Animales , Secuencia de Bases , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Epigénesis Genética , Exones , Femenino , Homocigoto , Masculino , Ratones/crecimiento & desarrollo , Ratones/metabolismo , Ratones Transgénicos , Datos de Secuencia Molecular , Linaje , ADN Metiltransferasa 3B
17.
G3 (Bethesda) ; 2(11): 1393-6, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23173090

RESUMEN

We have used a forward genetic screen to identify genes required for transgene silencing in the mouse. Previously these genes were found using candidate-based sequencing, a slow and labor-intensive process. Recently, whole-exome deep sequencing has accelerated our ability to find the causative point mutations, resulting in the discovery of novel and sometimes unexpected genes. Here we report the identification of translation initiation factor 3, subunit H (eIF3h) in two modifier of murine metastable epialleles (Mommes) lines. Mice carrying mutations in this gene have not been reported previously, and a possible involvement of eIF3h in transcription or epigenetic regulation has not been considered.


Asunto(s)
Efectos de la Posición Cromosómica , Factor 3 de Iniciación Eucariótica/genética , Subunidades de Proteína/genética , Animales , Exoma/genética , Silenciador del Gen , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Ratones Transgénicos , Mutación , Análisis de Secuencia de ADN , Transgenes
18.
Cell ; 150(1): 88-99, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22738725

RESUMEN

Transgenerational effects have wide-ranging implications for human health, biological adaptation, and evolution; however, their mechanisms and biology remain poorly understood. Here, we demonstrate that a germline nuclear small RNA/chromatin pathway can maintain stable inheritance for many generations when triggered by a piRNA-dependent foreign RNA response in C. elegans. Using forward genetic screens and candidate approaches, we find that a core set of nuclear RNAi and chromatin factors is required for multigenerational inheritance of environmental RNAi and piRNA silencing. These include a germline-specific nuclear Argonaute HRDE1/WAGO-9, a HP1 ortholog HPL-2, and two putative histone methyltransferases, SET-25 and SET-32. piRNAs can trigger highly stable long-term silencing lasting at least 20 generations. Once established, this long-term memory becomes independent of the piRNA trigger but remains dependent on the nuclear RNAi/chromatin pathway. Our data present a multigenerational epigenetic inheritance mechanism induced by piRNAs.


Asunto(s)
Caenorhabditis elegans/genética , Epigenómica , Interferencia de ARN , ARN de Helminto/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Femenino , Células Germinativas/metabolismo , Masculino , Transgenes
19.
J Cell Biol ; 197(6): 789-800, 2012 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-22689656

RESUMEN

Two intraflagellar transport (IFT) complexes, IFT-A and IFT-B, build and maintain primary cilia and are required for activity of the Sonic hedgehog (Shh) pathway. A weak allele of the IFT-A gene, Ift144, caused subtle defects in cilia structure and ectopic activation of the Shh pathway. In contrast, strong loss of IFT-A, caused by either absence of Ift144 or mutations in two IFT-A genes, blocked normal ciliogenesis and decreased Shh signaling. In strong IFT-A mutants, the Shh pathway proteins Gli2, Sufu, and Kif7 localized correctly to cilia tips, suggesting that these pathway components were trafficked by IFT-B. In contrast, the membrane proteins Arl13b, ACIII, and Smo failed to localize to primary cilia in the absence of IFT-A. We propose that the increased Shh activity seen in partial loss-of-function IFT-A mutants may be a result of decreased ciliary ACIII and that the loss of Shh activity in the absence of IFT-A is a result of severe disruptions of cilia structure and membrane protein trafficking.


Asunto(s)
Cilios/ultraestructura , Proteínas Hedgehog/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas/metabolismo , Transducción de Señal , Animales , Cilios/metabolismo , Proteínas del Citoesqueleto , Flagelos/metabolismo , Proteínas Hedgehog/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Proteínas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína Gli2 con Dedos de Zinc
20.
Hum Mol Genet ; 21(8): 1808-23, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22228095

RESUMEN

Mutations in components of the intraflagellar transport (IFT) machinery required for assembly and function of the primary cilium cause a subset of human ciliopathies characterized primarily by skeletal dysplasia. Recently, mutations in the IFT-A gene IFT144 have been described in patients with Sensenbrenner and Jeune syndromes, which are associated with short ribs and limbs, polydactyly and craniofacial defects. Here, we describe an N-ethyl-N-nitrosourea-derived mouse mutant with a hypomorphic missense mutation in the Ift144 gene. The mutant twinkle-toes (Ift144(twt)) phenocopies a number of the skeletal and craniofacial anomalies seen in patients with human skeletal ciliopathies. Like other IFT-A mouse mutants, Ift144 mutant embryos display a generalized ligand-independent expansion of hedgehog (Hh) signalling, in spite of defective ciliogenesis and an attenuation of the ability of mutant cells to respond to upstream stimulation of the pathway. This enhanced Hh signalling is consistent with cleft palate and polydactyly phenotypes in the Ift144(twt) mutant, although extensive rib branching, fusion and truncation phenotypes correlate with defects in early somite patterning and may reflect contributions from multiple signalling pathways. Analysis of embryos harbouring a second allele of Ift144 which represents a functional null, revealed a dose-dependent effect on limb outgrowth consistent with the short-limb phenotypes characteristic of these ciliopathies. This allelic series of mouse mutants provides a unique opportunity to uncover the underlying mechanistic basis of this intriguing subset of ciliopathies.


Asunto(s)
Anomalías Múltiples/genética , Cilios , Anomalías Craneofaciales/genética , Proteínas/genética , Anomalías Múltiples/embriología , Anomalías Múltiples/metabolismo , Animales , Mapeo Cromosómico , Cilios/fisiología , Cilios/ultraestructura , Anomalías Craneofaciales/embriología , Anomalías Craneofaciales/metabolismo , Proteínas del Citoesqueleto , Embrión de Mamíferos , Factores de Crecimiento de Fibroblastos/metabolismo , Miembro Anterior/anomalías , Miembro Anterior/metabolismo , Proteínas Hedgehog/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Mutagénesis , Mutación Missense , Fenotipo , Polidactilia/embriología , Polidactilia/genética , Polidactilia/metabolismo , Proteínas/química , Costillas/anomalías , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...