Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 3: 1449, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23618955

RESUMEN

To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences-Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Modelos Biológicos , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/fisiopatología , Proteínas de Neoplasias/metabolismo , Línea Celular Tumoral , Movimiento Celular , Tamaño de la Célula , Supervivencia Celular , Simulación por Computador , Humanos
2.
Sens Actuators B Chem ; 173: 817-823, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23175599

RESUMEN

We report a novel method for wafer level, high throughput optical chemical sensor patterning, with precise control of the sensor volume and capability of producing arbitrary microscale patterns. Monomeric oxygen (O(2)) and pH optical probes were polymerized with 2-hydroxyethyl methacrylate (HEMA) and acrylamide (AM) to form spin-coatable and further crosslinkable polymers. A micro-patterning method based on micro-fabrication techniques (photolithography, wet chemical process and reactive ion etch) was developed to miniaturize the sensor film onto glass substrates in arbitrary sizes and shapes. The sensitivity of fabricated micro-patterns was characterized under various oxygen concentrations and pH values. The process for spatially integration of two sensors (Oxygen and pH) on the same substrate surface was also developed, and preliminary fabrication and characterization results were presented. To the best of our knowledge, it is the first time that poly (2-hydroxylethyl methacrylate)-co-poly (acrylamide) (PHEMA-co-PAM)-based sensors had been patterned and integrated at the wafer level with micron scale precision control using microfabrication techniques. The developed methods can provide a feasible way to miniaturize and integrate the optical chemical sensor system and can be applied to any lab-on-a-chip system, especially the biological micro-systems requiring optical sensing of single or multiple analytes.

3.
J Biomed Opt ; 17(3): 037008, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22502580

RESUMEN

Intercellular heterogeneity is a key factor in a variety of core cellular processes including proliferation, stimulus response, carcinogenesis, and drug resistance. However, cell-to-cell variability studies at the single-cell level have been hampered by the lack of enabling experimental techniques. We present a measurement platform that features the capability to quantify oxygen consumption rates of individual, non-interacting and interacting cells under normoxic and hypoxic conditions. It is based on real-time concentration measurements of metabolites of interest by means of extracellular optical sensors in cell-isolating microwells of subnanoliter volume. We present the results of a series of measurements of oxygen consumption rates (OCRs) of individual non-interacting and interacting human epithelial cells. We measured the effects of cell-to-cell interactions by using the system's capability to isolate two and three cells in a single well. The major advantages of the approach are: 1. ratiometric, intensity-based characterization of the metabolic phenotype at the single-cell level, 2. minimal invasiveness due to the distant positioning of sensors, and 3. ability to study the effects of cell-cell interactions on cellular respiration rates.


Asunto(s)
Comunicación Celular/fisiología , Consumo de Oxígeno/fisiología , Fenotipo , Análisis de la Célula Individual/instrumentación , Análisis de la Célula Individual/métodos , Técnicas de Cultivo de Célula/instrumentación , Línea Celular Transformada , Respiración de la Célula/fisiología , Humanos , Modelos Lineales , Técnicas Analíticas Microfluídicas/instrumentación , Microscopía/instrumentación , Microscopía/métodos
4.
Mol Biosyst ; 8(3): 804-17, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22222464

RESUMEN

Phenotypic characterization of individual cells provides crucial insights into intercellular heterogeneity and enables access to information that is unavailable from ensemble averaged, bulk cell analyses. Single-cell studies have attracted significant interest in recent years and spurred the development of a variety of commercially available and research-grade technologies. To quantify cell-to-cell variability of cell populations, we have developed an experimental platform for real-time measurements of oxygen consumption (OC) kinetics at the single-cell level. Unique challenges inherent to these single-cell measurements arise, and no existing data analysis methodology is available to address them. Here we present a data processing and analysis method that addresses challenges encountered with this unique type of data in order to extract biologically relevant information. We applied the method to analyze OC profiles obtained with single cells of two different cell lines derived from metaplastic and dysplastic human Barrett's esophageal epithelium. In terms of method development, three main challenges were considered for this heterogeneous dynamic system: (i) high levels of noise, (ii) the lack of a priori knowledge of single-cell dynamics, and (iii) the role of intercellular variability within and across cell types. Several strategies and solutions to address each of these three challenges are presented. The features such as slopes, intercepts, breakpoint or change-point were extracted for every OC profile and compared across individual cells and cell types. The results demonstrated that the extracted features facilitated exposition of subtle differences between individual cells and their responses to cell-cell interactions. With minor modifications, this method can be used to process and analyze data from other acquisition and experimental modalities at the single-cell level, providing a valuable statistical framework for single-cell analysis.


Asunto(s)
Oxígeno/metabolismo , Análisis de la Célula Individual/métodos , Esófago de Barrett/metabolismo , Línea Celular , Esófago/metabolismo , Humanos , Modelos Lineales
5.
Opt Express ; 15(25): 17351-61, 2007 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-19551029

RESUMEN

Using techniques of flow-assisted self-assembly we synthesized three-dimensional (3D) lattices of dye-doped fluorescent (FL) 5 mum polystyrene spheres with 3% size dispersion with well controlled thickness from one monolayer up to 43 monolayers. In FL transmission spectra of such lattices we observed signatures of coupling between multiple spheres with nearly resonant whispering gallery modes (WGMs). These include (i) splitting of the WGM-related peaks with the magnitude 4.0-5.3 nm at the average wavelength 535 nm, (ii) pump dependence of FL transmission showing that the splitting is seen only above the threshold for lasing WGMs, and (iii) anomalously high transmission at the WGM peak wavelengths compared to the background for samples with thickness around 25 mum. We propose a qualitative interpretation of the observed WGM transport based on an analogy with percolation theory where the sites of the lattice (spheres) are connected with optical "bonds" which are present with probability depending on the spheres' size dispersion. We predict that the WGM percolation threshold should be achievable in close packed 3D lattices formed by cavities with ~10(3) quality factors of WGMs and with ~1% size dispersion. Such systems can be used for developing next generation of resonant sensors and arrayed-resonator light emitting devices.

6.
Opt Express ; 14(20): 9460-6, 2006 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19529332

RESUMEN

The optical coupling between two size-mismatched spheres was studied by using one sphere as a local source of light with whispering gallery modes (WGMs) and detecting the intensity of the light scattered by a second sphere playing the part of a receiver of electromagnetic energy. We developed techniques to control inter-cavity gap sizes between microspheres with ~30nm accuracy. We demonstrate high efficiencies (up to 0.2-0.3) of coupling between two separated cavities with strongly detuned eigenstates. At small separations (<1 microm) between the spheres, the mechanism of coupling is interpreted in terms of the Fano resonance between discrete level (true WGMs excited in a source sphere) and a continuum of "quasi"-WGMs with distorted shape which can be induced in the receiving sphere. At larger separations the spectra detected from the receiving sphere originate from scattering of the radiative modes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...