RESUMEN
Understanding how high-risk individuals are protected from Alzheimer's disease (AD) may illuminate potential therapeutic targets. A previously identified non-coding SNP in SH3RF3/POSH2 significantly delayed disease onset in a Caribbean Hispanic cohort carrying the PSEN1 G206A mutation sufficient to cause early-onset AD and microglial expression of SH3RF3 has been reported to be a key driver of late-onset AD. SH3RF3 acts as a JNK pathway scaffold and can activate NFκB signaling. While effects of SH3RF3 knockdown in human neurons were subtle, including decreased phospho-tau S422, knockdown in human microglia significantly reduced inflammatory cytokines in response to either a viral mimic or oligomeric Aß42. This was associated with reduced activation of JNK and NFκB pathways in response to these stimuli. Pharmacological inhibition of JNK or NFκB signaling phenocopied SH3RF3 knockdown. We also found PSEN1 G206A microglia have reduced inflammatory responses to oAß42. Thus, further reduction of microglial inflammatory responses in PSEN1 mutant carriers by protective SNPs in SH3RF3 might reduce the link between amyloid and neuroinflammation to subsequently delay the onset of AD.
RESUMEN
ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis using data from human autopsy tissue (consisting of males and females) and female human cell lines. Co-immunoprecipitation (co-IP) of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA-splicing proteins. ZCCHC17 knockdown results in widespread RNA-splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4-dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find a significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that the maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.
Asunto(s)
Enfermedad de Alzheimer , Resiliencia Psicológica , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/metabolismo , Cognición , Neuronas/metabolismo , ARN , Empalme del ARN/genética , Proteínas tau/metabolismoRESUMEN
ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's Disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis. Co-immunoprecipitation of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA splicing proteins. ZCCHC17 knockdown results in widespread RNA splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4 dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.
RESUMEN
During the early stages of Alzheimer's disease (AD) in both mouse models and human patients, soluble forms of Amyloid-ß 1-42 oligomers (Aß42o) trigger loss of excitatory synapses (synaptotoxicity) in cortical and hippocampal pyramidal neurons (PNs) prior to the formation of insoluble amyloid plaques. In a transgenic AD mouse model, we observed a spatially restricted structural remodeling of mitochondria in the apical tufts of CA1 PNs dendrites corresponding to the dendritic domain where the earliest synaptic loss is detected in vivo. We also observed AMPK over-activation as well as increased fragmentation and loss of mitochondrial biomass in Ngn2-induced neurons derived from a new APPSwe/Swe knockin human ES cell line. We demonstrate that Aß42o-dependent over-activation of the CAMKK2-AMPK kinase dyad mediates synaptic loss through coordinated phosphorylation of MFF-dependent mitochondrial fission and ULK2-dependent mitophagy. Our results uncover a unifying stress-response pathway causally linking Aß42o-dependent structural remodeling of dendritic mitochondria to synaptic loss.
Asunto(s)
Enfermedad de Alzheimer , Mitofagia , Proteínas Quinasas Activadas por AMP/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Dinámicas Mitocondriales , Fragmentos de Péptidos , Sinapsis/metabolismoRESUMEN
Apolipoprotein E ε4 (APOE4) is the primary genetic risk factor for the late-onset form of Alzheimer's disease (AD). Although the reason for this association is not completely understood, researchers have uncovered numerous effects of APOE4 expression on AD-relevant brain processes, including amyloid beta (Aß) accumulation, lipid metabolism, endosomal-lysosomal trafficking, and bioenergetics. In this study, we aimed to determine the effect of APOE4 allelic dosage on regional brain lipid composition in aged mice, as well as in cultured neurons. We performed a targeted lipidomic analysis on an AD-vulnerable brain region (entorhinal cortex; EC) and an AD-resistant brain region (primary visual cortex; PVC) from 14-15 month-old APOE3/3, APOE3/4, and APOE4/4 targeted replacement mice, as well as on neurons cultured with conditioned media from APOE3/3 or APOE4/4 astrocytes. Our results reveal that the EC possesses increased susceptibility to APOE4-associated lipid alterations compared to the PVC. In the EC, APOE4 expression showed a dominant effect in decreasing diacylglycerol (DAG) levels, and a semi-dominant, additive effect in the upregulation of multiple ceramide, glycosylated sphingolipid, and bis(monoacylglycerol)phosphate (BMP) species, lipids known to accumulate as a result of endosomal-lysosomal dysfunction. Neurons treated with conditioned media from APOE4/4 vs. APOE3/3 astrocytes showed similar alterations of DAG and BMP species to those observed in the mouse EC. Our results suggest that APOE4 expression differentially modulates regional neuronal lipid signatures, which may underlie the increased susceptibility of EC-localized neurons to AD pathology.
Asunto(s)
Péptidos beta-Amiloides , Apolipoproteína E4 , Corteza Entorrinal , Dosificación de Gen , Péptidos beta-Amiloides/metabolismo , Animales , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Corteza Entorrinal/metabolismo , Lipidómica , RatonesRESUMEN
It is essential to generate isolated populations of human neuronal subtypes in order to understand cell-type-specific roles in brain function and susceptibility to disease pathology. Here we describe a protocol for in-parallel generation of cortical glutamatergic (excitatory) and GABAergic (inhibitory) neurons from human pluripotent stem cells (hPSCs) by using the neurogenic transcription factors Ngn2 and a combination of Ascl1 and Dlx2, respectively. In contrast to the majority of neural transdifferentiation protocols that use transient lentiviral infection, the use of stable hPSC lines carrying doxycycline-inducible transcription factors allows neuronal differentiation to be initiated by addition of doxycycline and neural medium. This article presents a method to generate lentivirus from cultured mammalian cells and establish stable transcription factor-expressing cell lines (Basic Protocol 1), followed by a method for monolayer excitatory and inhibitory neuronal differentiation from the established lines (Basic Protocol 2). The resulting neurons reproducibly exhibit properties consistent with human cortical neurons, including the expected morphologies, expression of glutamatergic and GABAergic genes, and functional properties. Our approach enables the scalable and rapid production of human neurons suitable for modeling human brain diseases in a subtype-specific manner and examination of differential cellular vulnerability. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Lentivirus production and generation of stable hPSC lines Support Protocol 1: Expansion and maintenance of hPSCs Basic Protocol 2: Differentiation of EX- and IN-neurons Support Protocol 2: Experimental methods for validation of EX- and IN-neurons.
Asunto(s)
Células Madre Pluripotentes , Animales , Diferenciación Celular , Células Cultivadas , Humanos , Neurogénesis , NeuronasRESUMEN
The ε4 allele of apolipoprotein E (APOE) is the dominant genetic risk factor for late-onset Alzheimer's disease (AD). However, the reason for the association between APOE4 and AD remains unclear. While much of the research has focused on the ability of the apoE4 protein to increase the aggregation and decrease the clearance of Aß, there is also an abundance of data showing that APOE4 negatively impacts many additional processes in the brain, including bioenergetics. In order to gain a more comprehensive understanding of APOE4's role in AD pathogenesis, we performed a transcriptomics analysis of APOE4 vs. APOE3 expression in the entorhinal cortex (EC) and primary visual cortex (PVC) of aged APOE mice. This study revealed EC-specific upregulation of genes related to oxidative phosphorylation (OxPhos). Follow-up analysis utilizing the Seahorse platform showed decreased mitochondrial respiration with age in the hippocampus and cortex of APOE4 vs. APOE3 mice, but not in the EC of these mice. Additional studies, as well as the original transcriptomics data, suggest that multiple bioenergetic pathways are differentially regulated by APOE4 expression in the EC of aged APOE mice in order to increase the mitochondrial coupling efficiency in this region. Given the importance of the EC as one of the first regions to be affected by AD pathology in humans, the observation that the EC is susceptible to differential bioenergetic regulation in response to a metabolic stressor such as APOE4 may point to a causative factor in the pathogenesis of AD.
Asunto(s)
Apolipoproteína E4/genética , Encéfalo/metabolismo , Metabolismo Energético/genética , Metaboloma , Mitocondrias/patología , Transcriptoma , Animales , Masculino , Ratones , Mitocondrias/genética , Mitocondrias/metabolismoRESUMEN
The ε4 allele of apolipoprotein E (APOE) is the dominant genetic risk factor for late-onset Alzheimer's disease (AD). However, the reason APOE4 is associated with increased AD risk remains a source of debate. Neuronal hyperactivity is an early phenotype in both AD mouse models and in human AD, which may play a direct role in the pathogenesis of the disease. Here, we have identified an APOE4-associated hyperactivity phenotype in the brains of aged APOE mice using four complimentary techniques-fMRI, in vitro electrophysiology, in vivo electrophysiology, and metabolomics-with the most prominent hyperactivity occurring in the entorhinal cortex. Further analysis revealed that this neuronal hyperactivity is driven by decreased background inhibition caused by reduced responsiveness of excitatory neurons to GABAergic inhibitory inputs. Given the observations of neuronal hyperactivity in prodromal AD, we propose that this APOE4-driven hyperactivity may be a causative factor driving increased risk of AD among APOE4 carriers.
Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Corteza Entorrinal/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Envejecimiento , Animales , Apolipoproteína E3/genética , Ondas Encefálicas/fisiología , Metabolismo Energético/genética , Ácidos Grasos/biosíntesis , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones TransgénicosRESUMEN
Possession of the ε4 allele of apolipoprotein E (APOE) is the major genetic risk factor for late-onset Alzheimer's disease (AD). Although numerous hypotheses have been proposed, the precise cause of this increased AD risk is not yet known. In order to gain a more comprehensive understanding of APOE4's role in AD, we performed RNA-sequencing on an AD-vulnerable vs. an AD-resistant brain region from aged APOE targeted replacement mice. This transcriptomics analysis revealed a significant enrichment of genes involved in endosomal-lysosomal processing, suggesting an APOE4-specific endosomal-lysosomal pathway dysregulation in the brains of APOE4 mice. Further analysis revealed clear differences in the morphology of endosomal-lysosomal compartments, including an age-dependent increase in the number and size of early endosomes in APOE4 mice. These findings directly link the APOE4 genotype to endosomal-lysosomal dysregulation in an in vivo, AD pathology-free setting, which may play a causative role in the increased incidence of AD among APOE4 carriers.