Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 48-58, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38814235

RESUMEN

Probiotics have been used successfully in aquaculture to enhance disease resistance, nutrition, and/or growth of cultured organisms. Six strains of Bacillus were isolated from the intestinal tracts of fish and recognised by conventional biochemical traits. The six isolated strains were Bacillus cereus and Bacillus subtilis using MALDI-TOF-MS technique. The probiotic properties of these Bacillus strains were studied. The tested bacillus strains exhibit antibacterial activity against the different pathogens. The strain S5 gave the important inhibition zones against most pathogens (20.5, 20.33, 23, and 21 mm against Vibrio alginolyticus, Vibrio parahaemolyticus, Staphylococcus aureus, and Salmonella typhimurium, respectively). According to our results, all Bacillus strains have extracellular components that can stop pathogenic bacteria from growing. The enzymatic characterization showed that the tested strains can produce several biotechnological enzymes such as α-glucosidase, naphtol-AS-BI-Phosphohydrolase, esterase lipase, acid phosphatase, alkaline phosphatase, amylase, lipase, caseinase, and lecithinase. All Bacillus strains were adhesive to polystyrene. The adding Bacillus strains to the Artemia culture exerted significantly greater effects on the survival of Artemia. The challenge test on Artemia culture showed that the protection against pathogenic Vibrio was improved. These findings allow us to recommend the examined strains as prospective probiotic options for the Artemia culture, which will be used as food additives to improve the culture conditions of crustacean larvae and marine fish.


Asunto(s)
Artemia , Bacillus , Peces , Tracto Gastrointestinal , Probióticos , Animales , Probióticos/farmacología , Artemia/microbiología , Bacillus/enzimología , Bacillus/aislamiento & purificación , Tracto Gastrointestinal/microbiología , Peces/microbiología , Vibrio/patogenicidad , Vibrio/efectos de los fármacos , Antibacterianos/farmacología , Antibiosis
2.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 59-68, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38814234

RESUMEN

Development of novel functional foods is trending as one of the hot topics in food science and food/beverage industries. In the present study, the anti-diabetic, anti-hyperlipidemic and histo-protective effects of the extra virgin olive oil (EVOO) enriched with the organosulfur diallyl sulfide (DAS) (DAS-rich EVOO) were evaluated in alloxan-induced diabetic mice. The ingestion of EVOO (500µL daily for two weeks) attenuated alloxan-induced elevated glucose, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase, lactate dehydrogenase (LDH), urea and creatinine. It also normalized the levels of triglycerides (TG), total cholesterols (TC), low-density lipoprotein-cholesterol (LDL-c) and their consequent atherogenic index of plasma (AIP) in diabetic animals. Additionally, EVOO prevented lipid peroxidation (MDA) and reduced the level of hydrogen peroxide (H2O2) in diabetic animals. Concomitantly, it enhanced the activity of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD), reducing thereby tissue oxidative stress injury. The overall histologic (pancreas, liver, and kidney) alterations were also improved after EVOO ingestion. The manifest anti-diabetic, lipid-lowering and histo-protective properties of EVOO were markedly potentiated with DAS-rich EVOO suggesting possible synergistic interactions between DAS and EVOO lipophilic bioactive ingredients. Overall, EVOO and DAS-rich EVOO show promise as functional foods and/or adjuvants for the treatment of diabetes and its complications.


Asunto(s)
Compuestos Alílicos , Diabetes Mellitus Experimental , Hipoglucemiantes , Hipolipemiantes , Aceite de Oliva , Sulfuros , Animales , Aceite de Oliva/química , Aceite de Oliva/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Compuestos Alílicos/farmacología , Compuestos Alílicos/uso terapéutico , Sulfuros/farmacología , Sulfuros/uso terapéutico , Sulfuros/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Ratones , Hipolipemiantes/farmacología , Masculino , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Páncreas/efectos de los fármacos , Páncreas/patología , Páncreas/metabolismo , Glutatión Peroxidasa/metabolismo , Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Superóxido Dismutasa/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Alanina Transaminasa/sangre , Alanina Transaminasa/metabolismo , Aspartato Aminotransferasas/metabolismo , Aspartato Aminotransferasas/sangre , Triglicéridos/sangre , Triglicéridos/metabolismo
3.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 88-96, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38430036

RESUMEN

Biosynthesis of silver nanoparticles using natural compounds derived from plant kingdom is currently used as safe and low-cost technique for nanoparticles synthesis with important abilities to inhibit multidrug resistant microorganisms (MDR). ESKAPE pathogens, especially MDR ones, are widely spread in hospital and intensive care units. In the present study, AgNPs using Ducrosia flabellifolia aqueous extract were synthesized using a reduction method. The green synthesized D. flabellifolia-AgNPs were characterized by UV-Vis spectrophotometer, Scanning electron microscopy (SEM), and X-ray diffraction assays. The tested D. flabellifolia aqueous extract was tested for its chemical composition using Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (LC-ESI-MS). Anti-quorum sensing and anti-ESKAPE potential of D. flabellifolia-AgNPs was also performed.  Results from LC-ESI-MS technique revealed the identification of chlorogenic acid, protocatechuic acid, ferulic acid, caffeic acid, 2,5-dihydroxybenzoic acid, and gallic acid as main phytoconstituents. Indeed, the characterization of newly synthetized D. flabellifolia-AgNPs revealed spherical shape with mean particle size about 16.961±2.914 nm. Bio-reduction of silver was confirmed by the maximum surface plasmon resonance of D. flabellifolia-AgNPs at 430 nm. Newly synthetized D. flabellifolia-AgNPs were found to possess important anti-ESKAPE activity with low minimal inhibitory concentrations (MICs) ranging from 0.078 to 0.312 mg/mL, and low minimal bactericidal concentrations (MBCs) varying from 0.312 to 0.625 mg/mL. Moreover, D. flabellifolia-AgNPs were active against Candida utilis ATCC 9255, C. tropicalis ATCC 1362, and C. albicans ATCC 20402 with high mean diameter of growth inhibition at 5 mg/mL, low MICs, and minimal fungicidal concentrations values (MFCs). The newly synthetized D. flabellifolia-AgNPs were able to inhibit violacein production in Chromobacterium violaceum, pyocyanin in Pseudomonas aeruginosa starter strains.  Hence, the newly synthesized silver nanoparticles using D. flabellifolia aqueous extract can be used as an effective alternative to combat ESKAPE microorganisms. These silver nanoparticles can attenuate virulence of Gram-negative bacteria by interfering with the quorum sensing system and inhibiting cell-to-cell communication.


Asunto(s)
Antiinfecciosos , Apiaceae , Nanopartículas del Metal , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Percepción de Quorum , Extractos Vegetales/farmacología , Extractos Vegetales/química , Candida albicans , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/farmacología , Antibacterianos/química
5.
Pathogens ; 12(11)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38003833

RESUMEN

Candidiasis, caused by opportunistic fungal pathogens of the Candida genus, poses a significant threat to immunocompromised individuals. Natural compounds derived from medicinal plants have gained attention as potential sources of anti-fungal agents. Ajwa dates (Phoenix dactylifera L.) have been recognized for their diverse phytochemical composition and therapeutic potential. In this study, we employed a multi-faceted approach to explore the anti-candidiasis potential of Ajwa dates' phytochemicals. Utilizing network pharmacology, we constructed an interaction network to elucidate the intricate relationships between Ajwa dates phytoconstituents and the Candida-associated molecular targets of humans. Our analysis revealed key nodes in the network (STAT3, IL-2, PTPRC, STAT1, CASP1, ALB, TP53, TLR4, TNF and PPARG), suggesting the potential modulation of several crucial processes (the regulation of the response to a cytokine stimulus, regulation of the inflammatory response, positive regulation of cytokine production, cellular response to external stimulus, etc.) and fungal pathways (Th17 cell differentiation, the Toll-like receptor signaling pathway, the C-type lectin receptor signaling pathway and necroptosis). To validate these findings, molecular docking studies were conducted, revealing the binding affinities of the phytochemicals towards selected Candida protein targets of humans (ALB-rutin (-9.7 kJ/mol), STAT1-rutin (-9.2 kJ/mol), STAT3-isoquercetin (-8.7 kJ/mol), IL2-ß-carotene (-8.5 kJ/mol), CASP1-ß-carotene (-8.2 kJ/mol), TP53-isoquercetin (-8.8 kJ/mol), PPARG-luteolin (-8.3 kJ/mol), TNF-ßcarotene (-7.7 kJ/mol), TLR4-rutin (-7.4 kJ/mol) and PTPRC-rutin (-7.0 kJ/mol)). Furthermore, molecular dynamics simulations of rutin-ALB and rutin-STAT1 complex were performed to gain insights into the stability and dynamics of the identified ligand-target complexes over time. Overall, the results not only contribute to the understanding of the molecular interactions underlying the anti-fungal potential of specific phytochemicals of Ajwa dates in humans but also provide a rational basis for the development of novel therapeutic strategies against candidiasis in humans. This study underscores the significance of network pharmacology, molecular docking and dynamics simulations in accelerating the discovery of natural products as effective anti-fungal agents. However, further experimental validation of the identified compounds is warranted to translate these findings into practical therapeutic applications.

6.
Nutrients ; 15(18)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37764733

RESUMEN

Globally, lung cancer remains one of the leading causes of cancer-related mortality, warranting the exploration of novel and effective therapeutic approaches. Soy-fermented food products have long been associated with potential health benefits, including anticancer properties. There is still a lack of understanding of the active components of these drugs as well as their underlying mechanistic pathways responsible for their anti-lung cancer effects. In this study, we have undertaken an integrated approach combining network pharmacology and molecular docking to elucidate the mechanism of action of soy-fermented food products against lung cancer through simulation and in vitro validation. Using network pharmacology, we constructed a comprehensive network of interactions between the identified isoflavones in soy-fermented food products and lung cancer-associated targets. Molecular docking was performed to predict the binding affinities of these compounds with key lung cancer-related proteins. Additionally, molecular simulation was utilized to investigate the stability of the compound-target complexes over time, providing insights into their dynamic interactions. Our results identified daidzein as a potential active component in soy-fermented food products with high binding affinities towards critical lung cancer targets. Molecular dynamic simulations confirmed the stability of the daidzein-MMP9 and daidzein-HSP90AA1 complexes, suggesting their potential as effective inhibitors. Additionally, in vitro validation experiments demonstrated that treatment with daidzein significantly inhibited cancer cell proliferation and suppressed cancer cell migration and the invasion of A549 lung cancer cells. Consequently, the estrogen signaling pathway was recognized as the pathway modulated by daidzein against lung cancer. Overall, the findings of the present study highlight the therapeutic potential of soy-fermented food products in lung cancer treatment and provide valuable insights for the development of targeted therapies using the identified bioactive compounds. Further investigation and clinical studies are warranted to validate these findings and translate them into clinical applications for improved lung cancer management.

7.
Food Chem Toxicol ; 180: 114014, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37659576

RESUMEN

Honey is the most recognized natural food by-product derived from flower nectar and the upper aero-digestive tract of the honeybees. Significance of honey for its medicinal importance are well-documented in the world's oldest medical literatures. However, the current urbanization, environmental contaminations and changes in agricultural, as well as apiculture practices has led to various types of contaminations in honey. Among all, pesticide contamination has become one of the major issues worldwide. This review focuses on the recent updates concerning pesticides occurrence in honey, as well as how the repeated use and long-term exposure to honey contaminated with pesticide residues could affect the human physiological functions, possibly leading to the development of various cancers. Our findings suggests that uncontrolled use of pesticides in farming and apiculture practices leads to the occurrence of pesticides residues in honey. Therefore, regular consumption of such honey will pose a serious threat to human health, since most of the pesticides has been reported as potential carcinogens. This review will draw the attention of honey consumers, scientific communities, apiculture farmers, as well as governing bodies to strictly monitor the pesticide usage in floriculture, agriculture as well as other related practices.

8.
Antibiotics (Basel) ; 12(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37760712

RESUMEN

The emergence of antibiotic resistance poses a serious threat to humankind, emphasizing the need for alternative antimicrobial agents. This study focuses on investigating the antibacterial, antibiofilm, and anti-quorum-sensing (anti-QS) activities of saponin-derived silver nanoparticles (AgNPs-S) obtained from Ajwa dates (Phoenix dactylifera L.). The design and synthesis of these novel nanoparticles were explored in the context of developing alternative strategies to combat bacterial infections. The Ajwa date saponin extract was used as a reducing and stabilizing agent to synthesize AgNPs-S, which was characterized using various analytical techniques, including UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The biosynthesized AgNPs-S exhibited potent antibacterial activity against both Gram-positive and Gram-negative bacteria due to their capability to disrupt bacterial cell membranes and the leakage of nucleic acid and protein contents. The AgNPs-S effectively inhibited biofilm formation and quorum-sensing (QS) activity by interfering with QS signaling molecules, which play a pivotal role in bacterial virulence and pathogenicity. Furthermore, the AgNPs-S demonstrated significant antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and cytotoxicity against small lung cancer cells (A549 cells). Overall, the findings of the present study provide valuable insights into the potential use of these nanoparticles as alternative therapeutic agents for the design and development of novel antibiotics. Further investigations are warranted to elucidate the possible mechanism involved and safety concerns when it is used in vivo, paving the way for future therapeutic applications in combating bacterial infections and overcoming antibiotic resistance.

9.
Life (Basel) ; 13(8)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37629596

RESUMEN

Globally, breast cancer (BC), the second-biggest cause of cancer death, occurs due to unregulated cell proliferation leading to metastasis to other parts of the human organ. Recently, the exploration of naturally derived anticancer agents has become popular due to their fewer adverse effects. Among the natural products, soybean is a very well-known legume that contains important bioactive compounds such as diadazine, glycetin, genistein, and genistin. Therefore, keeping its therapeutic potential in mind, multi-targeted molecular docking and simulation studies were conducted to explore the potential role of soybean-derived isoflavone genistin against several breast cancer-signaling proteins (ER-alpha, ER-Beta, collapsin response mediator protein 2, CA 15-3, human epidermal growth factor receptor 2). A comparative study of the genistin-protein docked complex was explored to investigate its potential role in BC. The molecular binding energy (∆G) of the docked complex was calculated along with ADMET properties. The molecular docking score of genistin with ubiquitin-like protein activation complex-a type of Cancer Antigen (CA) 15.3 (PDB ID-2NVU, 5T6P, and 1YX8) showed the highest binding energy, ranging from -9.5 to -7.0 Kcal/mol, respectively. Furthermore, the highest docking scores of the complex were additionally put through molecular dynamics (MD) simulation analysis. MD simulations of the selected complex were performed at 100 ns to study the stability of the genistin-ubiquitin-like protein CA 15.3 complex, which appeared to be quite stable. Additionally, the ADMET study demonstrated that genistin complies with all drug-likeness standards, including Lipinski, Egan, Veber, Ghose, and Muegge. Therefore, based on the results, genistin can be considered as one of the potential drugs for the management and treatment of BC. In addition, the obtained results suggest that genistin could pave the way for new drug discovery to manage breast cancer and has potential in the development of nutraceuticals.

10.
Biomol Biomed ; 23(6): 1051-1068, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37421468

RESUMEN

Antimicrobial resistance by pathogenic bacteria has become a global risk to human health in recent years. The most promising approach to combating antimicrobial resistance is to target virulent traits of bacteria. In the present study, a biosurfactant derived from the probiotic strain Lactobacillus acidophilus was tested against three Gram-negative bacteria to evaluate its inhibitory potential on their biofilms, and whether it affected the virulence factors controlled by quorum sensing (QS). A reduction in the virulence factors of Chromobacterium violaceum (violacein production), Serratia marcescens (prodigiosin production) and Pseudomonas aeruginosa (pyocyanin, total protease, LasB elastase and LasA protease production) was observed at different sub-MIC concentrations in a dose-dependent manner. Biofilm development was reduced by 65.76%, 70.64% and 58.12% at the highest sub-MIC levels for C. violaceum, P. aeruginosa and S. marcescens, respectively. Biofilm formation on glass surfaces exhibited significant reduction, with less bacterial aggregation and reduced formation of extracellular polymeric materials. Additionally, swimming motility and exopolysaccharides (EPS) production were shown to be reduced in the presence of the L. acidophilus-derived biosurfactant. Furthermore, molecular docking analysis performed on compounds identified through gas chromatography-mass spectrometry (GC-MS) analysis of QS and biofilm proteins yielded further insights into the mechanism underlying the anti-QS activity. Therefore, the present study has clearly demonstrated that a biosurfactant derived from L. acidophilus can significantly inhibit virulence factors of Gram-negative pathogenic bacteria. This could provide an effective method to inhibit the formation of biofilms and QS in Gram-negative bacteria.


Asunto(s)
Probióticos , Percepción de Quorum , Humanos , Virulencia , Lactobacillus acidophilus/metabolismo , Simulación del Acoplamiento Molecular , Lactobacillus/metabolismo , Antibacterianos/química , Biopelículas , Factores de Virulencia , Bacterias Gramnegativas , Serratia marcescens/metabolismo , Péptido Hidrolasas/farmacología
11.
Antibiotics (Basel) ; 12(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37370305

RESUMEN

In recent years, bacterial pathogens have developed resistance to antimicrobial agents that have created a global threat to human health and environment. As a novel approach to combating antimicrobial resistance (AMR), targeting bacteria's virulent traits that can be explained by quorum sensing (QS) is considered to be one of the most promising approaches. In the present study, biologically synthesized silver nanoparticles derived from Lactobacillus rhamnosus (AgNPs-LR) were tested against three Gram-negative bacteria to determine whether they inhibited the formation of biofilms and triggered the virulence factors controlled by QS. In C. violaceum and S. marcescens, a remarkable inhibition (>70%) of QS-mediated violacein and prodigiosin production was recorded, respectively. A dose-dependent decrease in virulence factors of P. aeruginosa (pyocyanin, pyoverdine, LasA protease, LasB elastase and rhamnolipid production) was also observed with AgNPs-LR. The biofilm development was reduced by 72.56%, 61.70%, and 64.66% at highest sub-MIC for C. violaceum, S. marcescens and P. aeruginosa, respectively. Observations on glass surfaces have shown remarkable reductions in biofilm formation, with less aggregation of bacteria and a reduced amount of extra polymeric materials being formed from the bacteria. Moreover, swimming motility and exopolysaccharides (EPS) was also found to reduce in the presence of AgNPs-LR. Therefore, these results clearly demonstrate that AgNPs-LR is highly effective in inhibiting the development of biofilms and the QS-mediated virulent traits of Gram-negative bacteria. In the future, AgNPs-LR may be used as an alternative to conventional antibiotics for the treatment of bacterial infections after careful evaluation in animal models, especially for the development of topical antimicrobial agents.

12.
Polymers (Basel) ; 15(6)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36987188

RESUMEN

In recent years, there has been a growing interest in bio-based degradable plastics as an alternative to synthetic plastic. Polyhyroxybutyrate (PHB) is a macromolecule produced by bacteria as a part of their metabolism. Bacteria accumulate them as reserve materials when growing under different stress conditions. PHBs can be selected as alternatives for the production of biodegradable plastics because of their fast degradation properties when exposed to natural environmental conditions. Hence, the present study was undertaken in order to isolate the potential PHB-producing bacteria isolated from the municipal solid waste landfill site soil samples collected from the Ha'il region of Saudi Arabia to assess the production of PHB using agro-residues as a carbon source and to evaluate the growth of PHB production. In order to screen the isolates for producing PHB, a dye-based procedure was initially employed. Based on the 16S rRNA analysis of the isolates, Bacillus flexus (B. flexus) accumulated the highest amount of PHB of all the isolates. By using a UV-Vis spectrophotometer and Fourier-transform infrared spectrophotometer (FT-IR), in which a sharp absorption band at 1721.93 cm-1 (C=O stretching of ester), 1273.23 cm-1 (-CH group), multiple bands between 1000 and 1300 cm-1 (stretching of the C-O bond), 2939.53 cm-1 (-CH3 stretching), 2880.39 cm-1 (-CH2 stretching) and 3510.02 cm-1 (terminal -OH group), the extracted polymer was characterized and confirmed its structure as PHB. The highest PHB production by B. flexus was obtained after 48 h of incubation (3.9 g/L) at pH 7.0 (3.7 g/L), 35 °C (3.5 g/L) with glucose (4.1 g/L) and peptone (3.4 g/L) as carbon and nitrogen sources, respectively. As a result of the use of various cheap agricultural wastes, such as rice bran, barley bran, wheat bran, orange peel and banana peel as carbon sources, the strain was found to be capable of accumulating PHB. Using response surface methodology (RSM) for optimization of PHB synthesis using a Box-Behnken design (BBD) proved to be highly effective in increasing the polymer yield of the synthesis. With the optimum conditions obtained from RSM, PHB content can be increased by approximately 1.3-fold when compared to an unoptimized medium, resulting in a significant reduction in production costs. Thus, isolate B. flexus is a highly promising candidate for the production of industrial-size quantities of PHB from agricultural wastes and is capable of removing the environmental concerns associated with synthetic plastics from the industrial production process. Moreover, the successful production of bioplastics using a microbial culture provides a promising avenue for the large-scale production of biodegradable and renewable plastics with potential applications in various industries, including packaging, agriculture and medicine.

13.
J Funct Biomater ; 14(3)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36976050

RESUMEN

Despite the existence of modern antidiabetic medications, diabetes still affects millions of individuals worldwide, with a high death and disability rate. There has been a concerted search for alternative natural medicinal agents; luteolin (LUT), a polyphenolic molecule, might be a good choice, both because of its efficacy and because of it having fewer side effects, compared to conventional medicines. This study aims to explore the antidiabetic potential of LUT in diabetic rats, induced by streptozotocin (STZ; 50 mg/kg b.w.), intraperitoneally. The level of blood glucose, oral glucose tolerance test (OGTT), body weight, glycated hemoglobin A1c (HbA1c), lipidemic status, antioxidant enzymes, and cytokines were assessed. Also, its action mechanism was explored through molecular docking and molecular dynamics simulations. Oral supplementation of LUT for 21 days resulted in a significant decrease in the blood glucose, oxidative stress, and proinflammatory cytokine levels, and modulated the hyperlipidemia profile. LUT also ameliorated the tested biomarkers of liver and kidney function. In addition, LUT markedly reversed the damage to the pancreas, liver, and kidney cells. Moreover, molecular docking and molecular dynamics simulations revealed excellent antidiabetic behavior of LUT. In conclusion, the current investigation revealed that LUT possesses antidiabetic activity, through the reversing of hyperlipidemia, oxidative stress, and proinflammatory status in diabetic groups. Therefore, LUT might be a good remedy for the management or treatment of diabetes.

14.
Biol Trace Elem Res ; 201(12): 5546-5560, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36890344

RESUMEN

The pathophysiology of coronavirus disease-19 (COVID-19) is characterized by worsened inflammation because of weakened immunity, causing the infiltration of immune cells, followed by necrosis. Consequently, these pathophysiological changes may lead to a life-threatening decline in perfusion due to hyperplasia of the lungs, instigating severe pneumonia, and causing fatalities. Additionally, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause mortality due to viral septic shock, resulting from unrestrained and backfiring immune reactions to the pathogen. Sepsis can cause premature organ failure in COVID-19 patients, as well. Notably, vitamin D and its derivatives and minerals, such as zinc and magnesium, have been reported to improve the immune system against respiratory illnesses. This comprehensive review aims to provide updated mechanistic details of vitamin D and zinc as immunomodulators. Additionally, this review also focuses on their role in respiratory illnesses, while specifically delineating the plausibility of employing them as a preventive and therapeutic agent against current and future pandemics from an immunological perspective. Furthermore, this comprehensive review will attract the attention of health professionals, nutritionists, pharmaceuticals, and scientific communities, as it encourages the use of such micronutrients for therapeutic purposes, as well as promoting their health benefits for a healthy lifestyle and wellbeing.


Asunto(s)
COVID-19 , Humanos , Vitamina D/uso terapéutico , SARS-CoV-2 , Zinc/uso terapéutico , Vitaminas/uso terapéutico , Preparaciones Farmacéuticas
15.
PeerJ ; 11: e14977, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36890873

RESUMEN

Background: Every year, the food business produces a sizeable amount of waste, including the portions of fruits and vegetables that are inedible, and those that have reached a stage where they are no longer suitable for human consumption. These by-products comprise of components such as natural antioxidants (polyphenols, carotenoid etc.), dietary fiber, and other trace elements, which can provide functionality to food. Due to changing lifestyles, there is an increased demand for ready-to-eat products like sausages, salami, and meat patties. In this line, meat products like buffalo meat sausages and patties are also gaining the interest of consumers because of their rich taste. Meat, however, has a high percentage of fat and is totally deprived of dietary fiber, which poses severe health problems like cardiovascular (CV) and gastrointestinal diseases. The health-conscious consumer is becoming increasingly aware of the importance of balancing flavor and nutrition. Therefore, to overcome this problem, several fruit and vegetable wastes from their respective industries can be successfully incorporated into meat products that provide dietary fiber and play the role of natural antioxidants; this will slow down lipid oxidation and increase the shelf-life of meat products. Methodology: Extensive literature searches have been performed using various scientific search engines. We collected relevant and informative data from subject-specific and recent literature on sustainable food processing of wasted food products. We also looked into the various applications of waste fruit and vegetable products, including cereals, when they are incorporated into meat and meat products. All relevant searches meeting the criteria were included in this review, and exclusion criteria were also set. Results: The pomace and peels of fruits like grapes, pomegranates, cauliflower, sweet lime, and other citrus are some of the most commonly used fruit and vegetable by-products. These vegetable by-products help inhibit oxidation (of both lipids and proteins) and the growth of pathogenic and spoilage bacteria, all without altering the consumer's acceptability of the product on a sensory level. When included in meat products, these by-products have the potential to improve the overall product quality and lengthen its shelf-life under certain circumstances. Conclusion: Cost-effective and easily accessible by-products from the fruit and vegetable processing industries can be used in meat products to enhance their quality features (physicochemical, microbial, sensory, and textural aspects) and health benefits. Additionally, this will provides environmental food sustainability by lowering waste disposal and improving the food's functional efficacy.


Asunto(s)
Productos de la Carne , Verduras , Humanos , Frutas/química , Carne/análisis , Antioxidantes/análisis , Fibras de la Dieta
16.
Metabolites ; 12(11)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36422259

RESUMEN

Vincristine is an anti-cancer compound and one of the most crucial vinca alkaloids produced by the medicinal plant Catharanthus roseus (L.) G. Don. (Apocynaceae). This plant is home to hundreds of endophytic microbes, which produce a variety of bioactive secondary metabolites that are known for their medicinal properties. In this study, we focused on isolating an endophytic fungus that could increase the yield of vincristine under laboratory conditions as an alternative to plant-mediated extraction of vincristine. The endophytic fungus Nigrospora zimmermanii (Apiosporaceae) was isolated from Catharanthus roseus and it was found to be producing the anticancer compound vincristine. It was identified using high-performance thin-layer chromatography by matching the Rf value and spectral data with the vincristine standard and mass spectrometry data and the reference molecule from the PubChem database. The generation study of this microbe showed that the production of vincristine in the parent fungus was at its maximum, i.e., 5.344 µg/mL, while it was slightly reduced in subsequent generations. A colonization study was also performed and it showed that the fungus N. zimmermanii was able to re-infect the plant Catharanthus roseus after 20 days of inoculation. The colonization study showed that N. zimmernanii could infect the plant after isolation. This method is an efficient and easy way to obtain a high yield of vincristine, as compared to plant-mediated production.

17.
Polymers (Basel) ; 14(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36235929

RESUMEN

Recently, there has been significant interest in bio-based degradable plastics owing to their potential as a green and sustainable alternative to synthetic plastics due to their biodegradable properties. Polyhydroxybutyrate (PHB) is a biodegradable polymer that is produced by bacteria and archaea as carbon and energy reserves. Due to its rapid degradation in natural environments, it can be considered a biodegradable plastic alternative. In the present study, a dye-based procedure was used to screen PHB-producing bacteria isolated from mangrove soil samples. Among the seven isolates, Agromyces indicus (A. indicus), identified by means of 16S rRNA analysis, accumulated the highest amount of PHB. The extracted polymer was characterized by a UV-Vis spectrophotometer, Fourier-transform infrared (FTIR) spectroscopy, and for the presence of the phbB gene, which confirmed the structure of the polymer as PHB. The maximum PHB production by A. indicus was achieved after 96 h of incubation at a pH of 8.0 and 35 °C in the presence of 2% NaCl, with glucose and peptone as the carbon and nitrogen sources, respectively. The strain was found to be capable of accumulating PHB when various cheap agricultural wastes, such as rice, barley, corn, and wheat bran, were used as the carbon sources. The response surface methodology (RSM) through the central composite design (CCD) for optimizing the PHB synthesis was found to be highly efficient at augmenting the polymer yields. As a result of the optimum conditions obtained from the RSM, this strain can increase the PHB content by approximately 1.4-fold when compared with an unoptimized medium, which would substantially lower the production cost. Therefore, the isolate A. indicus strain B2 may be regarded as one of the best candidates for the industrial production of PHB from agricultural wastes, and it can remove the environmental concerns associated with synthetic plastic.

18.
J Fungi (Basel) ; 8(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36012852

RESUMEN

Vitamin D deficiency is highly prevalent in India and worldwide. Mushrooms are important nutritional foods, and in this context shiitake (Lentinula edodes), button (Agaricus bisporus) and oyster (Pleurotus ostreatus) mushrooms are known for their bioactive properties. The application of ultraviolet (UV) irradiation for the production of substantial amounts of vitamin D2 is well established. Levels of serum 25-hydroxy vitamin D (25-OHD), parathyroid hormone (PTH), calcium, phosphorus and alkaline phosphatase (ALP) were significantly (p < 0.05) improved in vitamin-D-deficient rats after feeding with UVB irradiated mushrooms for 4 weeks. Further, microscopic observations indicate an improvement in the osteoid area and the reduction in trabecular separation of the femur bone. In addition, the level of expression of the vitamin D receptor (VDR) gene and genes metabolizing vitamin D were explored. It was observed that in mushroom-fed and vitamin-D-supplemented groups, there was upregulation of CYP2R1 and VDR, while there was downregulation of CYP27B1 in the liver. Further, CYP2R1 was downregulated, while CYP27B1 and VDR were upregulated in kidney tissue.

19.
Antibiotics (Basel) ; 11(7)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35884107

RESUMEN

Worldwide, the primary problem today is the proliferation of cancer and secondary bacterial infections caused by biofilms, as they are the principal causes of death due to the lack of effective drugs. A great deal of biological activities of silver nanoparticles (AgNPs) have made them a brilliant choice for the development of new drugs in recent years. The present study was conducted to evaluate the anticancer, antibacterial, anti-QS, and antibiofilm effects of AgNPs synthesized from Eruca sativa (E. sativa) leaf extract. The ultraviolet-visible (UV-Vis) spectra showed a peak of surface plasmon resonance at 424 nm λmax, which corresponded to AgNP formation. The Fourier transform infrared spectroscopy (FT-IR) confirmed that biological moieties are involved for the development of AgNPs. Moreover, transmission electron microscopy (TEM) analyses confirmed the spherical shape and uniform size (8.11 to 15 nm) of the AgNPs. In human lung cancer cells (A549), the anticancer potential of AgNPs was examined by the MTT [3-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, scratch assay, and invasion assay. The results indicated that AgNPs inhibit the migration of A549 cells. The synthesized AgNPs showed MIC values of 12.5 µg/mL against Chromobacterium violaceum (C. violaceum) and 25 µg/mL against Pseudomonas aeruginosa (P. aeruginosa), which demonstrated their antibacterial abilities. Biological compounds that disable the QS system are being investigated as potential strategies for preventing bacterial infections. Thus, we analyzed the potential effectiveness of synthesized AgNPs in inhibiting QS-regulated virulence factors and biofilm formation in both strains of bacteria. In C. violaceum, the synthesized AgNPs significantly inhibited both violacein (85.18% at 1/2 × MIC) and acyl homoserine lactone (78.76% at 1/2 × MIC). QS inhibitory activity was also demonstrated in P. aeruginosa at a sub-MIC concentration (1/2 × MIC) by a reduction in pyocyanin activity (68.83%), total protease (68.50%), LasA activity (63.91%), and LasB activity (56.40%). Additionally, the exopolysaccharide production was significantly reduced in both C. violaceum (65.79% at 1/2 × MIC) and P. aeruginosa (57.65% at 1/2 × MIC). The formation of biofilm was also significantly inhibited at 1/2 × MIC in C. violaceum (76.49%) and in P. aeruginosa (65.31%). Moreover, a GC-MS analysis confirmed the presence of different classes of bioactive phytochemical constituents present in the leaf extract of E. sativa. On the basis of our results, we conclude that biologically synthesized AgNPs showed numerous multifunctional properties and have the potential to be used against human cancer and bacterial biofilm-related infections.

20.
Artículo en Inglés | MEDLINE | ID: mdl-35646135

RESUMEN

The aim of this study was to investigate the phytochemical composition of dried Roselle calyx (Hibiscus sabdariffa L.) using both ethanolic and aqueous extracts. We report the antimicrobial activities against a wide range of bacteria, yeast, and fungi. The antioxidant activities were tested using 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, and 2-2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging assays. We report also for the first time the effect of the swarming motility in Pseudomonas aeruginosa PAO1. Our results showed that the tested two extracts were a rich source of phenols, flavonoids, and tannins with different degrees. Additionally, eleven phytoconstituents were identified by LC/MS technique (Hibiscus acid: 3-caffeoylquinic acid, 5-caffeoylquinic acid, 5-feruloylquinic acid, cyanidin 3-o-glucoside, myricetin, quercetin 7-o-rutinoside, quercetin 3-o-glucoside, delphinidin 3-o-sambubioside, and kaempferol 3-o-p-coumaroyl-glucoside). Also, it was shown that the calyx extract can scavenge 86% of the DPPH radical, while the rate of 53% and 23% of inhibition of the DPPH was obtained only at the concentration of 125 and 50 µg/mL, and a small inhibition was made at a concentration of 5 µg/mL. Roselle extracts inhibited the growth of the selected microorganisms at low concentrations, while higher concentrations are needed to completely kill them. However, no activity against CVB-3 was recorded for both extracts. In addition, the obtained extracts reduced the swarming motility of P. aeruginosa at 2.5 mg/ml. The docking simulation showed acceptable binding affinities (up to -9.6 kcal/mol) and interaction with key residues of 1JIJ, 2QZW, and 2UVO. The obtained results highlighted the potential use of Roselle extract as a source of phytoconstituents with promising antimicrobial, antioxidant, and anti-quorum sensing activities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...