Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Headache ; 62(7): 780-791, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35676889

RESUMEN

OBJECTIVE: Our laboratory has recently shown that there is a decrease in neuronal complexity in head pain processing regions in mouse models of chronic migraine-associated pain and aura. Importantly, restoration of this neuronal complexity corresponds with anti-migraine effects of known and experimental pharmacotherapies. The objective of the current study was to expand this work and examine other brain regions involved with pain or emotional processing. We also investigated the generalizability of our findings by analyzing neuronal cytoarchitectural changes in a model of complex regional pain syndrome (CRPS), a peripheral pain disorder. METHODS: We used the nitroglycerin (NTG) model of chronic migraine-associated pain in which mice receive 10 mg/kg NTG every other day for 9 days. Cortical spreading depression (CSD), a physiological corelate of migraine aura, was evoked in anesthetized mice using KCl. CRPS was induced by tibial fracture followed by casting. Neuronal cytoarchitecture was visualized with Golgi stain and analyzed with Simple Neurite Tracer. RESULTS: In the NTG model, we previously showed decreased neuronal complexity in the trigeminal nucleus caudalis (TNC) and periaqueductal gray (PAG). In contrast, we found increased neuronal complexity in the thalamus and no change in the amygdala or caudate putamen in this study. Following CSD, we observed decreased neuronal complexity in the PAG, in line with decreases in the somatosensory cortex and TNC reported with this model previously. In the CRPS model there was decreased neuronal complexity in the hippocampus, as reported by others; increased complexity in the PAG; and no change within the somatosensory cortex. CONCLUSIONS: Collectively these results demonstrate that alterations in neuronal complexity are a feature of both chronic migraine and chronic CRPS. However, each type of pain presents a unique cytoarchitectural signature, which may provide insight on how these pain states differentially transition from acute to chronic conditions.


Asunto(s)
Síndromes de Dolor Regional Complejo , Depresión de Propagación Cortical , Trastornos Migrañosos , Animales , Depresión de Propagación Cortical/fisiología , Modelos Animales de Enfermedad , Cefalea , Ratones , Trastornos Migrañosos/tratamiento farmacológico , Nitroglicerina/efectos adversos
2.
Headache ; 61(1): 170-178, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33326598

RESUMEN

OBJECTIVE: The aim of this study was to determine if the non-convulsant delta-opioid receptor (DOR) agonist, KNT-127, could inhibit migraine-associated endpoints. BACKGROUND: The DOR has been identified as a therapeutic target for migraine. However, the development of delta agonists is limited as some ligands have seizurogenic properties, which may be related to their ability to induce receptor internalization. While both pro- and non-convulsant delta agonists can reduce migraine-associated allodynia, only the proconvulsant agonist, SNC80, has been shown to decrease cortical spreading depression (CSD). It is unclear if the ability of delta agonists to modulate cortical activity is related to the same signaling mechanisms that produce proconvulsant effects. METHODS: The effects of the non-convulsant delta agonist, KNT-127, were examined. Repetitive CSD was induced in female C57BL6/J (n = 6/group) mice by continuous application of KCl and the effect of KNT-127/vehicle (Veh) on both local field potentials and optical intrinsic signals was determined. To assess the effect of KNT-127 on established chronic migraine-associated pain, male and female C57BL6/J mice were treated with nitroglycerin (NTG; 10 mg/kg, ip) every other day for 9 days and tested with KNT-127 (5 mg/kg, sc) or Veh on day 10 (n = 6/group). DOR-enhanced green fluorescent protein mice (n = 4/group) were used to confirm the internalization properties of KNT-127 in the trigeminal ganglia, trigeminal nucleus caudalis, and somatosensory cortex. RESULTS: KNT-127 inhibited CSD events (t(10)  = 3.570, p = 0.0051). In addition, this delta agonist also reversed established cephalic allodynia in the NTG model of chronic migraine (F(1, 20)  = 12.80, p < 0.01). Furthermore, KNT-127 caused limited internalization of DOR in key migraine processing regions. CONCLUSIONS: This study shows that the antimigraine effects of DOR agonists can be separated from their proconvulsant effects. This data provides valuable information for the continued development of delta agonists for the treatment of migraine.


Asunto(s)
Analgésicos Opioides/farmacología , Depresión de Propagación Cortical/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Trastornos Migrañosos/tratamiento farmacológico , Morfinanos/farmacología , Receptores Opioides delta/agonistas , Analgésicos Opioides/administración & dosificación , Animales , Modelos Animales de Enfermedad , Femenino , Hiperalgesia/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Morfinanos/administración & dosificación , Nitroglicerina/farmacología , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...