Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anim Nutr ; 16: 84-95, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38333574

RESUMEN

Understanding how different livestock species and breeds respond to consumption of brackish water could improve usage of this resource. Therefore, Angora, Boer, and Spanish goat doelings and Dorper, Katahdin, and St. Croix ewe lambs (6 animals per animal type [AT]; initial age = 296 ± 2.1 days) consuming water with varying concentrations of minerals of a natural brackish water source (BR) and sodium chloride (NaCl; SL) were used to determine effects on water and feed intake, nutrient digestion, heat energy, methane emission, ruminal fluid conditions, and blood constituent concentrations. There were 6 simultaneous 6 (water treatments [WT]) × 6 (AT) Latin squares with 3-wk periods. The WT were fresh (FR), BR alone (100-BR), a similar total dissolved solids (TDS) concentration as 100-BR via NaCl addition to FR (100-SL), BR with concentrations of all minerals increased by approximately 50% (150-BR), a similar TDS level as 150-BR by NaCl addition to FR (150-SL), and a similar 150 TDS level achieved by addition of a 1:1 mixture of BR minerals and NaCl to 100-BR (150-BR/SL). Concentrations (mg/kg) in BR were 4928 TDS, 85.9 bicarbonate, 224.9 calcium, 1175 chloride, 60.5 magnesium, 4.59 potassium, 1387 sodium, 1962 sulfate, and 8.3 boron, and TDS in other WT were 209, 5684, 7508, 8309, and 7319 mg/kg for FR, 100-SL, 150-BR, 150-SL, and 150-BR/SL, respectively. There were very few significant effects of WT or AT × WT interactions, although AT had numerous effects. Water intake was affected by AT (P = 0.02) and WT (P = 0.04), with greater water intake for 150-SL than for FR, 100-BR, 100-SL, and 150-BR. Dry matter intake among AT was lowest (P < 0.05) for Angora. Digestion of organic matter and neutral detergent fiber and heat energy differed among AT (P < 0.05), but nitrogen digestion and ruminal methane emission were similar among AT. Blood aldosterone concentration was higher (P < 0.05) for FR than for other WT. In conclusion, all AT seemed resilient to these WT regardless of mineral source and concentrations, with TDS less than 8300 mg/kg, which did not influence nutrient utilization, ruminal fermentation, energy balance, or blood constituent levels.

2.
Int Microbiol ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38057458

RESUMEN

Understanding the rumen fermentation and methanogenic community in camels fed intensively is critical for optimizing rumen fermentation, improving feed efficiency, and lowering methane emissions. Using Illumina MiSeq sequencing, quantitative real-time PCR, and high-performance liquid chromatography, this study evaluates the influence of different concentrate supplement levels in the diet on rumen fermentation as well as the diversity and structure of the rumen methanogenic community for growing dromedary camels. Twelve growing camels were divided into three groups and given three levels of concentrate supplement, 0.7% (C1), 1% (C2), and 1.3% (C3) based on their body weight. All animals were fed alfalfa hay ad libitum. The levels of total volatile fatty acid, rumen ammonia, and methanogen copy number were unaffected by the supplementation level. Increasing the concentrate supplement level increased the proportion of propionic acid while decreasing the proportion of acetic acid. Increasing the level of concentrate in the diet had no effect on alpha diversity metrics or beta diversity of rumen methanogens. Methanobrevibacter and Methanosphaera predominated the methanogenic community and were declined as concentrate supplement level increased. This study sheds new light on the effect of concentrate supplement level in growing camels' diet on rumen fermentation and methanogenic community, which could help in the development of a strategy that aimed to reduce methane emissions and enhance feed efficiency.

3.
Anim Biotechnol ; 34(9): 4500-4509, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36649069

RESUMEN

Understanding the rumen microbiota of camels under different feeding conditions is necessary to optimize rumen fermentation and productivity. This study aims to investigate the effects of different concentrate supplement levels on digestion, rumen fermentation and bacteria in growing camels. Fifteen growing camels were divided into three groups and were fed alfalfa hay in addition to one of the three concentrate supplement levels based on body weight (BW): low (0.7%), medium (1%), and high (1.3%). Increasing the concentrate supplement level in the diet increased total dry matter intake but had no effect on nutrients digestibility, except for crude protein digestibility, which was enhanced with the high concentrate level. Growing camels at low-level had considerably higher rumen pH than those fed medium or high levels. Increasing the supplement level also increased rumen propionic acid but decreased acetic acid concentration. Principal coordinate analysis showed that concentrate levels clearly separated the ruminal bacterial communities where Bacteroidetes and Firmicutes were the dominant phyla and Prevotella, Ruminococcus, Butyrivibrio, RC9_gut_group, and Fibrobacteres were the dominant bacterial genera. This study expands our knowledge regarding the rumen microbiota of growing camels under different concentrate levels and reveals that medium concentrate levels could be appropriate for growing camels.


Asunto(s)
Alimentación Animal , Camelus , Animales , Fermentación , Alimentación Animal/análisis , Rumen/metabolismo , Dieta , Bacterias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...