Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39392676

RESUMEN

Annotation of newly sequenced genomes frequently includes genes, but rarely covers important non-coding genomic features such as the cis-regulatory modules-e.g., enhancers and silencers-that regulate gene expression. Here, we begin to remedy this situation by developing a workflow for rapid initial annotation of insect regulatory sequences, and provide a searchable database resource with enhancer predictions for 33 genomes. Using our previously developed SCRMshaw computational enhancer prediction method, we predict over 2.8 million regulatory sequences along with the tissues where they are expected to be active, in a set of insect species ranging over 360 million years of evolution. Extensive analysis and validation of the data provides several lines of evidence suggesting that we achieve a high true-positive rate for enhancer prediction. One, we show that our predictions target specific loci, rather than random genomic locations. Two, we predict enhancers in orthologous loci across a diverged set of species to a significantly higher degree than random expectation would allow. Three, we demonstrate that our predictions are highly enriched for regions of accessible chromatin. Four, we achieve a validation rate in excess of 70% using in vivo reporter gene assays. As we continue to annotate both new tissues and new species, our regulatory annotation resource will provide a rich source of data for the research community and will have utility for both small-scale (single gene, single species) and large-scale (many genes, many species) studies of gene regulation. In particular, the ability to search for functionally related regulatory elements in orthologous loci should greatly facilitate studies of enhancer evolution even among distantly related species.


Asunto(s)
Genoma de los Insectos , Insectos , Anotación de Secuencia Molecular , Animales , Insectos/genética , Insectos/clasificación , Genoma de los Insectos/genética , Elementos de Facilitación Genéticos/genética , Biología Computacional/métodos , Bases de Datos Genéticas
2.
Proc Biol Sci ; 291(2031): 20241142, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39288798

RESUMEN

Malaria control relies on insecticides targeting the mosquito vector, but this is increasingly compromised by insecticide resistance, which can be achieved by elevated expression of detoxifying enzymes that metabolize the insecticide. In diploid organisms, gene expression is regulated both in cis, by regulatory sequences on the same chromosome, and by trans acting factors, affecting both alleles equally. Differing levels of transcription can be caused by mutations in cis-regulatory modules (CRM), but few of these have been identified in mosquitoes. We crossed bendiocarb-resistant and susceptible Anopheles gambiae strains to identify cis-regulated genes that might be responsible for the resistant phenotype using RNAseq, and CRM sequences controlling gene expression in insecticide resistance relevant tissues were predicted using machine learning. We found 115 genes showing allele-specific expression (ASE) in hybrids of insecticide susceptible and resistant strains, suggesting cis-regulation is an important mechanism of gene expression regulation in A. gambiae. The genes showing ASE included a higher proportion of Anopheles-specific genes on average younger than genes with balanced allelic expression.


Asunto(s)
Alelos , Anopheles , Regulación de la Expresión Génica , Resistencia a los Insecticidas , Anopheles/genética , Anopheles/metabolismo , Animales , Resistencia a los Insecticidas/genética , Mosquitos Vectores/genética , Mosquitos Vectores/metabolismo , Insecticidas/farmacología
3.
bioRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38045426

RESUMEN

Malaria control relies on insecticides targeting the mosquito vector, but this is increasingly compromised by insecticide resistance, which can be achieved by elevated expression of detoxifying enzymes that metabolize the insecticide. In diploid organisms, gene expression is regulated both in cis, by regulatory sequences on the same chromosome, and by trans acting factors, affecting both alleles equally. Differing levels of transcription can be caused by mutations in cis-regulatory modules (CRM), but few of these have been identified in mosquitoes. We crossed bendiocarb resistant and susceptible Anopheles gambiae strains to identify cis-regulated genes that might be responsible for the resistant phenotype using RNAseq, and cis-regulatory module sequences controlling gene expression in insecticide resistance relevant tissues were predicted using machine learning. We found 115 genes showing allele specific expression in hybrids of insecticide susceptible and resistant strains, suggesting cis regulation is an important mechanism of gene expression regulation in Anopheles gambiae. The genes showing allele specific expression included a higher proportion of Anopheles specific genes on average younger than genes those with balanced allelic expression.

4.
PLoS Genet ; 19(2): e1010653, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36795790

RESUMEN

Animal traits develop through the expression and action of numerous regulatory and realizator genes that comprise a gene regulatory network (GRN). For each GRN, its underlying patterns of gene expression are controlled by cis-regulatory elements (CREs) that bind activating and repressing transcription factors. These interactions drive cell-type and developmental stage-specific transcriptional activation or repression. Most GRNs remain incompletely mapped, and a major barrier to this daunting task is CRE identification. Here, we used an in silico method to identify predicted CREs (pCREs) that comprise the GRN which governs sex-specific pigmentation of Drosophila melanogaster. Through in vivo assays, we demonstrate that many pCREs activate expression in the correct cell-type and developmental stage. We employed genome editing to demonstrate that two CREs control the pupal abdomen expression of trithorax, whose function is required for the dimorphic phenotype. Surprisingly, trithorax had no detectable effect on this GRN's key trans-regulators, but shapes the sex-specific expression of two realizator genes. Comparison of sequences orthologous to these CREs supports an evolutionary scenario where these trithorax CREs predated the origin of the dimorphic trait. Collectively, this study demonstrates how in silico approaches can shed novel insights on the GRN basis for a trait's development and evolution.


Asunto(s)
Drosophila melanogaster , Redes Reguladoras de Genes , Animales , Masculino , Femenino , Drosophila melanogaster/genética , Drosophila/genética , Factores de Transcripción/genética , Pigmentación/genética
5.
Insects ; 12(7)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209769

RESUMEN

An ever-growing number of insect genomes is being sequenced across the evolutionary spectrum. Comprehensive annotation of not only genes but also regulatory regions is critical for reaping the full benefits of this sequencing. Driven by developments in sequencing technologies and in both empirical and computational discovery strategies, the past few decades have witnessed dramatic progress in our ability to identify cis-regulatory modules (CRMs), sequences such as enhancers that play a major role in regulating transcription. Nevertheless, providing a timely and comprehensive regulatory annotation of newly sequenced insect genomes is an ongoing challenge. We review here the methods being used to identify CRMs in both model and non-model insect species, and focus on two tools that we have developed, REDfly and SCRMshaw. These resources can be paired together in a powerful combination to facilitate insect regulatory annotation over a broad range of species, with an accuracy equal to or better than that of other state-of-the-art methods.

6.
BMC Bioinformatics ; 20(1): 174, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30953451

RESUMEN

BACKGROUND: Identifying transcriptional enhancers and other cis-regulatory modules (CRMs) is an important goal of post-sequencing genome annotation. Computational approaches provide a useful complement to empirical methods for CRM discovery, but it is critical that we develop effective means to evaluate their performance in terms of estimating their sensitivity and specificity. RESULTS: We introduce here pCRMeval, a pipeline for in silico evaluation of any enhancer prediction tools that are flexible enough to be applied to the Drosophila melanogaster genome. pCRMeval compares the result of predictions with the extensive existing knowledge of experimentally-validated Drosophila CRMs in order to estimate the precision and relative sensitivity of the prediction method. In the case of supervised prediction methods-when training data composed of validated CRMs are used-pCRMeval can also assess the sensitivity of specific training sets. We demonstrate the utility of pCRMeval through evaluation of our SCRMshaw CRM prediction method and training data. By measuring the impact of different parameters on SCRMshaw performance, as assessed by pCRMeval, we develop a more robust version of SCRMshaw, SCRMshaw_HD, that improves the number of predictions while maintaining sensitivity and specificity. Our analysis also demonstrates that SCRMshaw_HD, when applied to increasingly less well-assembled genomes, maintains its strong predictive power with only a minor drop-off in performance. CONCLUSION: Our pCRMeval pipeline provides a general framework for evaluation that can be applied to any CRM prediction method, particularly a supervised method. While we make use of it here primarily to test and improve a particular method for CRM prediction, SCRMshaw, pCRMeval should provide a valuable platform to the research community not only for evaluating individual methods, but also for comparing between competing methods.


Asunto(s)
Biología Computacional , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos , Animales , Secuencia de Bases , Mapeo Cromosómico , Drosophila melanogaster/metabolismo , Femenino , Genoma de los Insectos , Masculino , Especificidad de la Especie , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...