Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2306244, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460180

RESUMEN

Many biological processes rely on endogenous electric fields (EFs), including tissue regeneration, cell development, wound healing, and cancer metastasis. Mimicking these biological EFs by applying external direct current stimulation (DCS) is therefore the key to many new therapeutic strategies. During DCS, the charge transfer from electrode to tissue relies on a combination of reversible and irreversible electrochemical processes, which may generate toxic or bio-altering substances, including metal ions and reactive oxygen species (ROS). Poly(3,4-ethylenedioxythiophene) (PEDOT) based electrodes are emerging as suitable candidates for DCS to improve biocompatibility compared to metals. This work addresses whether PEDOT electrodes can be tailored to favor reversible biocompatible charge transfer. To this end, different PEDOT formulations and their respective back electrodes are studied using cyclic voltammetry, chronopotentiometry, and direct measurements of H2 O2 and O2 . This combination of electrochemical methods sheds light on the time dynamics of reversible and irreversible charge transfer and the relationship between capacitance and ROS generation. The results presented here show that although all electrode materials investigated generate ROS, the onset of ROS can be delayed by increasing the electrode's capacitance via PEDOT coating, which has implications for future bioelectronic devices that allow longer reversibly driven pulse durations during DCS.

2.
Adv Healthc Mater ; : e2303401, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38354063

RESUMEN

Extracellular recordings with planar microelectrodes are the gold standard technique for recording the fast action potentials of neurons in the intact brain. The introduction of microfabrication techniques has revolutionized the in vivo recording of neuronal activity and introduced high-density, multi-electrode arrays that increase the spatial resolution of recordings and the number of neurons that can be simultaneously recorded. Despite these innovations, there is still debate about the ideal electrical transfer characteristics of extracellular electrodes. This uncertainty is partly due to the lack of systematic studies comparing electrodes with different characteristics, particularly for chronically implanted arrays over extended time periods. Here a high-density, flexible, and thin-film array is fabricated and tested, containing four distinct electrode types differing in surface material and surface topology and, thus, impedance. It is found that recording quality is strongly related to electrode impedance with signal amplitude and unit yield negatively correlated to impedance. Electrode impedances are stable for the duration of the experiment (up to 12 weeks) and recording quality does not deteriorate. The findings support the expectation from the theory that recording quality will increase as impedance decreases.

3.
Adv Healthc Mater ; : e2304169, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324245

RESUMEN

Brain interfaces that can stimulate neurons, cause minimal damage, and work for a long time will be central for future neuroprosthetics. Here, the long-term performance of highly flexible, thin polyimide shanks with several small (<15 µm) electrodes during electrical microstimulation of the visual cortex, is reported. The electrodes exhibit a remarkable stability when several billions of electrical pulses are applied in vitro. When the devices are implanted in the primary visual cortex (area V1) of mice and the animals are trained to detect electrical microstimulation, it is found that the perceptual thresholds are 2-20 microamperes (µA), which is far below the maximal currents that the electrodes can withstand. The long-term functionality of the devices in vivo is excellent, with stable performance for up to more than a year and little damage to the brain tissue. These results demonstrate the potential of thin floating electrodes for the long-term restoration of lost sensory functions.

4.
Lab Chip ; 23(23): 4967-4985, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37909911

RESUMEN

Electrical stimulation of ex vivo brain tissue slices has been a method used to understand mechanisms imparted by transcranial direct current stimulation (tDCS), but there are significant direct current electric field (dcEF) dosage and electrochemical by-product concerns in conventional experimental setups that may impact translational findings. Therefore, we developed an on-chip platform with fluidic, electrochemical, and magnetically-induced spatial control. Fluidically, the chamber geometrically confines precise dcEF delivery to the enclosed brain slice and allows for tissue recovery in order to monitor post-stimulation effects. Electrochemically, conducting hydrogel electrodes mitigate stimulation-induced faradaic reactions typical of commonly-used metal electrodes. Magnetically, we applied ferromagnetic substrates beneath the tissue and used an external permanent magnet to enable in situ rotational control in relation to the dcEF. By combining the microfluidic chamber with live-cell calcium imaging and electrophysiological recordings, we showcased the potential to study the acute and lasting effects of dcEFs with the potential of providing multi-session stimulation. This on-chip bioelectronic platform presents a modernized yet simple solution to electrically stimulate explanted tissue by offering more environmental control to users, which unlocks new opportunities to conduct thorough brain stimulation mechanistic investigations.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Estimulación Transcraneal de Corriente Directa/métodos , Encéfalo/fisiología , Electrodos , Estimulación Eléctrica , Dispositivos Laboratorio en un Chip
5.
BMC Microbiol ; 23(1): 273, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773096

RESUMEN

There has been considerable research into the understanding of the healthy skin microbiome. Similarly, there is also a considerable body of research into whether specific microbes contribute to skin disorders, with atopic dermatitis (AD) routinely linked to increased Staphylococcus aureus (S. aureus) colonisation. In this study, the epidermal surface of participants was sampled using swabs, while serial tape-stripping (35 tapes) was performed to sample through the stratum corneum. Samples were taken from AD patients and healthy controls, and the bacterial communities were profiled by metabarcoding the universal V3-V4 16S rRNA region. Results show that the majority of bacterial richness is located within the outermost layers of the stratum corneum, however there were many taxa that were found almost exclusively at the very outermost layer of the epidermis. We therefore hypothesise that tape-stripping can be performed to investigate the 'core microbiome' of participants by removing environmental contaminants. Interestingly, significant community variation between AD patients and healthy controls was only observable at the epidermal surface, yet a number of individual taxa were found to consistently differ with AD status across the entire epidermis (i.e. both the epidermal surface and within the epidermis). Sampling strategy could therefore be tailored dependent on the hypothesis, with sampling for forensic applications best performed using surface swabs and outer tapes, while profiling sub-surface communities may better reflect host genome and immunological status.


Asunto(s)
Dermatitis Atópica , Humanos , Dermatitis Atópica/microbiología , Staphylococcus aureus/genética , ARN Ribosómico 16S/genética , Epidermis/microbiología , Piel/microbiología
6.
APL Bioeng ; 7(3): 031505, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37736015

RESUMEN

Electrical stimulation (ES) shows promise as a therapy to promote recovery and regeneration after spinal cord injury. ES therapy establishes beneficial electric fields (EFs) and has been investigated in numerous studies, which date back nearly a century. In this review, we discuss the various engineering approaches available to generate regenerative EFs through direct current electrical stimulation and very low frequency electrical stimulation. We highlight the electrode-tissue interface, which is important for the appropriate choice of electrode material and stimulator circuitry. We discuss how to best estimate and control the generated field, which is an important measure for comparability of studies. Finally, we assess the methods used in these studies to measure functional recovery after the injury and treatment. This work reviews studies in the field of ES therapy with the goal of supporting decisions regarding best stimulation strategy and recovery assessment for future work.

8.
Sci Rep ; 13(1): 11444, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454232

RESUMEN

Bioelectric communication plays a significant role in several cellular processes and biological mechanisms, such as division, differentiation, migration, cancer metastasis, and wound healing. Ion flow across cellular walls leads to potential gradients and subsequent formation of constant or time-varying electric fields(EFs), which regulate cellular processes. An EF is natively generated towards the wound center during epithelial wound healing, aiming to align and guide cell migration, particularly of macrophages, fibroblasts, and keratinocytes. While this phenomenon, known as electrotaxis or galvanotaxis, has been extensively investigated across many cell types, it is typically explored one cell type at a time, which does not accurately represent cellular interactions during complex biological processes. Here we show the co-cultured electrotaxis of epidermal keratinocytes and dermal fibroblasts with a salt-bridgeless microfluidic approach for the first time. The electrotactic response of these cells was first assessed in mono-culture to establish a baseline, resulting in the characteristic cathodic migration for keratinocytes and anodic for fibroblasts. Both cell types retained their electrotactic properties in co-culture leading to clear cellular partition even in the presence of cellular collisions. The methods leveraged here pave the way for future co-culture electrotaxis experiments where the concurrent influence of cell types can be thoroughly investigated.


Asunto(s)
Fibroblastos , Queratinocitos , Técnicas de Cocultivo , Queratinocitos/metabolismo , Movimiento Celular/fisiología , Electricidad
9.
J Neural Eng ; 20(3)2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37386891

RESUMEN

Objective. Electrical stimulation of visual cortex via a neuroprosthesis induces the perception of dots of light ('phosphenes'), potentially allowing recognition of simple shapes even after decades of blindness. However, restoration of functional vision requires large numbers of electrodes, and chronic, clinical implantation of intracortical electrodes in the visual cortex has only been achieved using devices of up to 96 channels. We evaluated the efficacy and stability of a 1024-channel neuroprosthesis system in non-human primates (NHPs) over more than 3 years to assess its suitability for long-term vision restoration.Approach.We implanted 16 microelectrode arrays (Utah arrays) consisting of 8 × 8 electrodes with iridium oxide tips in the primary visual cortex (V1) and visual area 4 (V4) of two sighted macaques. We monitored the animals' health and measured electrode impedances and neuronal signal quality by calculating signal-to-noise ratios of visually driven neuronal activity, peak-to-peak voltages of the waveforms of action potentials, and the number of channels with high-amplitude signals. We delivered cortical microstimulation and determined the minimum current that could be perceived, monitoring the number of channels that successfully yielded phosphenes. We also examined the influence of the implant on a visual task after 2-3 years of implantation and determined the integrity of the brain tissue with a histological analysis 3-3.5 years post-implantation.Main results. The monkeys remained healthy throughout the implantation period and the device retained its mechanical integrity and electrical conductivity. However, we observed decreasing signal quality with time, declining numbers of phosphene-evoking electrodes, decreases in electrode impedances, and impaired performance on a visual task at visual field locations corresponding to implanted cortical regions. Current thresholds increased with time in one of the two animals. The histological analysis revealed encapsulation of arrays and cortical degeneration. Scanning electron microscopy on one array revealed degradation of IrOxcoating and higher impedances for electrodes with broken tips.Significance. Long-term implantation of a high-channel-count device in NHP visual cortex was accompanied by deformation of cortical tissue and decreased stimulation efficacy and signal quality over time. We conclude that improvements in device biocompatibility and/or refinement of implantation techniques are needed before future clinical use is feasible.


Asunto(s)
Ceguera , Animales , Haplorrinos , Utah , Microelectrodos , Potenciales de Acción
10.
Sci Robot ; 8(78): eadg2785, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37163610

RESUMEN

Soft robotics facilitates the deployment of large radial electrode arrays on the brain cortex through small craniotomies.


Asunto(s)
Electrocorticografía , Robótica , Corteza Cerebral , Encéfalo
11.
Adv Sci (Weinh) ; 10(14): e2207576, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36935361

RESUMEN

Flexible implantable neurointerfaces show great promise in addressing one of the major challenges of implantable neurotechnology, namely the loss of signal connected to unfavorable probe tissue interaction. The authors here show how multilayer polyimide probes allow high-density intracortical recordings to be combined with a reliable long-term stable tissue interface, thereby progressing toward chronic stability of implantable neurotechnology. The probes could record 10-60 single units over 5 months with a consistent peak-to-peak voltage at dimensions that ensure robust handling and insulation longevity. Probes that remain in intimate contact with the signaling tissue over months to years are a game changer for neuroscience and, importantly, open up for broader clinical translation of systems relying on neurotechnology to interface the human brain.


Asunto(s)
Encéfalo , Humanos , Electrodos Implantados
12.
Lab Chip ; 23(6): 1531-1546, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36723025

RESUMEN

Upon cutaneous injury, the human body naturally forms an electric field (EF) that acts as a guidance cue for relevant cellular and tissue repair and reorganization. However, the direct current (DC) flow imparted by this EF can be impacted by a variety of diseases. This work delves into the impact of DC stimulation on both healthy and diabetic in vitro wound healing models of human keratinocytes, the most prevalent cell type of the skin. The culmination of non-metal electrode materials and prudent microfluidic design allowed us to create a compact bioelectronic platform to study the effects of different sustained (12 hours galvanostatic DC) EF configurations on wound closure dynamics. Specifically, we compared if electrotactically closing a wound's gap from one wound edge (i.e., uni-directional EF) is as effective as compared to alternatingly polarizing both the wound's edges (i.e., pseudo-converging EF) as both of these spatial stimulation strategies are fundamental to the eventual translational electrode design and strategy. We found that uni-directional electric guidance cues were superior in group keratinocyte healing dynamics by enhancing the wound closure rate nearly three-fold for both healthy and diabetic-like keratinocyte collectives, compared to their non-stimulated respective controls. The motility-inhibited and diabetic-like keratinocytes regained wound closure rates with uni-directional electrical stimulation (increase from 1.0 to 2.8% h-1) comparable to their healthy non-stimulated keratinocyte counterparts (3.5% h-1). Our results bring hope that electrical stimulation delivered in a controlled manner can be a viable pathway to accelerate wound repair, and also by providing a baseline for other researchers trying to find an optimal electrode blueprint for in vivo DC stimulation.


Asunto(s)
Microfluídica , Piel , Humanos , Piel/metabolismo , Cicatrización de Heridas , Queratinocitos , Electricidad , Movimiento Celular/fisiología
13.
J Neurosci Methods ; 385: 109761, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470469

RESUMEN

Transcranial direct current stimulation (tDCS) is a promising non-invasive brain stimulation method to treat neurological and psychiatric diseases. However, its underlying neural mechanisms warrant further investigation. Indeed, dose-response interrelations are poorly understood. Placing explanted brain tissue, mostly from mice or rats, into a uniform direct current electric field (dcEF) is a well-established in vitro system to elucidate the neural mechanism of tDCS. Nevertheless, we will show that generating a defined, uniform, and constant dcEF throughout a brain slice is challenging. This article critically reviews the methods used to generate and calibrate a uniform dcEF. We use finite element analysis (FEA) to evaluate the widely used parallel electrode configuration and show that it may not reliably generate uniform dcEF within a brain slice inside an open interface or submerged chamber. Moreover, equivalent circuit analysis and measurements inside a testing chamber suggest that calibrating the dcEF intensity with two recording electrodes can inaccurately capture the true EF magnitude in the targeted tissue when specific criteria are not met. Finally, we outline why microfluidic chambers are an effective and calibration-free approach of generating spatiotemporally uniform dcEF for DCS in vitro studies, facilitating accurate and fine-scale dcEF adjustments. We are convinced that improving the precision and addressing the limitations of current experimental platforms will substantially improve the reproducibility of in vitro experimental results. A better mechanistic understanding of dose-response relations will ultimately facilitate more effective non-invasive stimulation therapies in patients.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Animales , Ratones , Ratas , Estimulación Transcraneal de Corriente Directa/métodos , Reproducibilidad de los Resultados , Microfluídica , Encéfalo/fisiología , Cabeza
14.
Acta Derm Venereol ; 102: adv00817, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-35818733

RESUMEN

The aim of this study was to investigate the early-life development of the skin microbiome in atopic dermatitis. Nineteen infants with atopic dermatitis and 19 healthy infants were evaluated 3 times, at 3 months intervals, within the first 30 months of life. Tape-strips were collected from volar forearms, cheeks, and eczema lesions, and the skin microbiome was assessed by 16S rRNA sequencing. Both the community structure and richness of the skin microbiome of infants with atopic dermatitis differed significantly from that of healthy infants, with greater richness in healthy infants. For infants with atopic dermatitis, the community composition was not dominated by Staphylococci. For healthy infants, community composition and richness correlated significantly with age, while such a pattern was not revealed in infants with atopic dermatitis. This suggests a slower maturation of the skin microbiome in atopic dermatitis, which precedes the staphylococcal predominance observed in older children and adults.


Asunto(s)
Dermatitis Atópica , Microbiota , Humanos , Lactante , Adulto , Niño , Dermatitis Atópica/diagnóstico , ARN Ribosómico 16S/genética , Piel
15.
Adv Sci (Weinh) ; 9(20): e2105913, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35499184

RESUMEN

Bioelectronic devices have found use at the interface with neural tissue to investigate and treat nervous system disorders. Here, the development and characterization of a very thin flexible bioelectronic implant inserted along the thoracic spinal cord in rats directly in contact with and conformable to the dorsal surface of the spinal cord are presented. There is no negative impact on hind-limb functionality nor any change in the volume or shape of the spinal cord. The bioelectronic implant is maintained in rats for a period of 12 weeks. The first subdural recordings of spinal cord activity in freely moving animals are presented; rats are plugged in via a recording cable and allowed to freely behave and move around on a raised platform. Recordings contained multiple distinct voltage waveforms spatially localize to individual electrodes. This device has great potential to monitor electrical signaling in the spinal cord after an injury and in the future, this implant will facilitate the identification of biomarkers in spinal cord injury and recovery, while enabling the delivery of localized electroceutical and chemical treatments.


Asunto(s)
Fenómenos Fisiológicos del Sistema Nervioso , Traumatismos de la Médula Espinal , Animales , Prótesis e Implantes , Ratas , Traumatismos de la Médula Espinal/terapia , Espacio Subdural
16.
Mar Environ Res ; 176: 105608, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35358909

RESUMEN

Seagrass meadows store significant carbon stocks at a global scale, but land-use change and other anthropogenic activities can alter the natural process of organic carbon (Corg) accumulation. Here, we assessed the carbon accumulation history of two seagrass meadows in Zanzibar (Tanzania) that have experienced different degrees of disturbance. The meadow at Stone Town has been highly exposed to urban development during the 20th century, while the Mbweni meadow is located in an area with relatively low impacts but historical clearing of adjacent mangroves. The results showed that the two sites had similar sedimentary Corg accumulation rates (22-25 g m-2 yr-1) since the 1940s, while during the last two decades (∼1998 until 2018) they exhibited 24-30% higher accumulation of Corg, which was linked to shifts in Corg sources. The increase in the δ13C isotopic signature of sedimentary Corg (towards a higher seagrass contribution) at the Stone Town site since 1998 points to improved seagrass meadow conditions and Corg accumulation capacity of the meadow after the relocation of a major sewage outlet in the mid-1990s. In contrast, the decrease in the δ13C signatures of sedimentary Corg in the Mbweni meadow since the early 2010s was likely linked to increased Corg run-off of mangrove/terrestrial material following mangrove deforestation. This study exemplifies two different pathways by which land-based human activities can alter the carbon storage capacity of seagrass meadows (i.e. sewage waste management and mangrove deforestation) and showcases opportunities for management of vegetated coastal Corg sinks.


Asunto(s)
Secuestro de Carbono , Remodelación Urbana , Carbono , Ecosistema , Sedimentos Geológicos , Humanos , Aguas del Alcantarillado
17.
Adv Sci (Weinh) ; 9(12): e2104701, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35191224

RESUMEN

Next-generation neural interfaces for bidirectional communication with the central nervous system aim to achieve the intimate integration with the neural tissue with minimal neuroinflammatory response, high spatio-temporal resolution, very high sensitivity, and readout stability. The design and manufacturing of devices for low power/low noise neural recording and safe and energy-efficient stimulation that are, at the same time, conformable to the brain, with matched mechanical properties and biocompatibility, is a convergence area of research where neuroscientists, materials scientists, and nanotechnologists operate synergically. The biotic-abiotic neural interface, however, remains a formidable challenge that prompts for new materials platforms and innovation in device layouts. Conductive polymers (CP) are attractive materials to be interfaced with the neural tissue and to be used as sensing/stimulating electrodes because of their mixed ionic-electronic conductivity, their low contact impedance, high charge storage capacitance, chemical versatility, and biocompatibility. This manuscript reviews the state-of-the-art of poly(3,4-ethylenedioxythiophene)-based neural interfaces for extracellular recording and stimulation, focusing on those technological approaches that are successfully demonstrated in vivo. The aim is to highlight the most reliable and ready-for-clinical-use solutions, in terms of materials technology and recording performance, other than spot major limitations and identify future trends in this field.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Polímeros , Conductividad Eléctrica , Electrodos , Polímeros/química
18.
mSphere ; 7(1): e0091721, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35196118

RESUMEN

Several factors have been shown to influence the composition of the bacterial communities inhabiting healthy skin, with variation between different individuals, differing skin depths, and body locations (spatial-temporal variation). Atopic dermatitis (AD) is a chronic skin disease also affecting the skin-associated bacterial communities. While the effects of AD have been studied on these processes individually, few have considered how AD disrupts the spatial-temporal variation of the skin bacteria as a whole (i.e., considered these processes simultaneously). Here, we characterized the skin-associated bacterial communities of healthy volunteers and lesional and nonlesional skin of AD patients by metabarcoding the universal V3-V4 16S rRNA region from tape strip skin samples. We quantified the spatial-temporal variation (interindividual variation, differing skin depths, multiple time points) of the skin-associated bacteria within healthy controls and AD patients, including the relative change induced by AD in each. Interindividual variation correlated with the bacterial community far more strongly than any other factors followed by skin depth and then AD status. There was no significant temporal variation found within either AD patients or healthy controls. The bacterial community was found to vary markedly according to AD severity, and between patients without and with filaggrin mutations. Therefore, future studies may benefit from sampling subsurface epidermal communities and considering AD severity and the host genome in understanding the role of the skin bacterial community within AD pathogenesis rather than considering AD as a presence-absence disorder. IMPORTANCE The bacteria associated with human skin may influence skin barrier function and the immune response. Previous studies have attempted to understand the factors that regulate the skin bacteria, characterizing the spatial-temporal variation of the skin bacteria within unaffected skin. Here, we quantified the effect of AD on the skin bacteria on multiple spatial-temporal factors simultaneously. Although significant community variation between healthy controls and AD patients was observed, the effects of AD on the overall bacterial community were relatively low compared to other measured factors. Results here suggest that changes in specific taxa rather than wholesale changes in the skin bacteria are associated with mild to moderate AD. Further studies would benefit from incorporating the complexity of AD into models to better understand the condition, including AD severity and the host genome, alongside microbial composition.


Asunto(s)
Dermatitis Atópica , Bacterias/genética , Dermatitis Atópica/microbiología , Voluntarios Sanos , Humanos , ARN Ribosómico 16S/genética , Piel/microbiología
19.
Cell Tissue Res ; 387(3): 461-477, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35029757

RESUMEN

Neural probes are sophisticated electrophysiological tools used for intra-cortical recording and stimulation. These microelectrode arrays, designed to penetrate and interface the brain from within, contribute at the forefront of basic and clinical neuroscience. However, one of the challenges and currently most significant limitations is their 'seamless' long-term integration into the surrounding brain tissue. Following implantation, which is typically accompanied by bleeding, the tissue responds with a scarring process, resulting in a gliotic region closest to the probe. This glial scarring is often associated with neuroinflammation, neurodegeneration, and a leaky blood-brain interface (BBI). The engineering progress on minimizing this reaction in the form of improved materials, microfabrication, and surgical techniques is summarized in this review. As research over the past decade has progressed towards a more detailed understanding of the nature of this biological response, it is time to pose the question: Are penetrating probes completely free from glial scarring at all possible?


Asunto(s)
Cicatriz , Gliosis , Cicatriz/patología , Electrodos Implantados , Humanos , Microelectrodos
20.
Biomaterials ; 281: 121372, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35066285

RESUMEN

Flexible neural implants are extremely favored, as the most successful strategy to promote probe-tissue integration and avoid severe gliosis relies on reducing the mechanical mismatch between probe and brain tissue. But what are the realistic requirements for achieving chronic recording stability? What are the critical dimensions and main factors determining glial scar-free device integration? To answer these questions, two types of hair-sized polyimide-based flexible intracortical (PIXI) arrays were fabricated, differing only in their cross-sectional area. Chronic tissue reaction to both types was evaluated in rats, and in different implantation setups. Interfacial stresses were found to play a critical role in long-term tissue integration. Still, all the devices provided high quality chronic recordings of single units and inflammatory gene expression was not significantly upregulated for larger devices. Our study points out that the most relevant factor in eliciting FBR is played by mechanical probe-tissue interactions, that polyimide is well tolerated by the tissue, and that a holistic design - considering material properties, geometrical dimensions and assembling techniques - is the key towards longevity and long-term performance of intracortical probes. The optimization of only one parameter did not yet lead to the successful translation of research accomplishments into chronic preclinical and clinical applications.


Asunto(s)
Microelectrodos , Animales , Electrodos Implantados/efectos adversos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA