Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO J ; 41(1): e108341, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34747040

RESUMEN

Excitatory amino acid transporters (EAATs) maintain glutamate gradients in the brain essential for neurotransmission and to prevent neuronal death. They use ionic gradients as energy source and co-transport transmitter into the cytoplasm with Na+ and H+ , while counter-transporting K+ to re-initiate the transport cycle. However, the molecular mechanisms underlying ion-coupled transport remain incompletely understood. Here, we present 3D X-ray crystallographic and cryo-EM structures, as well as thermodynamic analysis of human EAAT1 in different ion bound conformations, including elusive counter-transport ion bound states. Binding energies of Na+ and H+ , and unexpectedly Ca2+ , are coupled to neurotransmitter binding. Ca2+ competes for a conserved Na+ site, suggesting a regulatory role for Ca2+ in glutamate transport at the synapse, while H+ binds to a conserved glutamate residue stabilizing substrate occlusion. The counter-transported ion binding site overlaps with that of glutamate, revealing the K+ -based mechanism to exclude the transmitter during the transport cycle and to prevent its neurotoxic release on the extracellular side.


Asunto(s)
Transportador 1 de Aminoácidos Excitadores/metabolismo , Sitios de Unión , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Microscopía por Crioelectrón , Transportador 1 de Aminoácidos Excitadores/química , Transportador 1 de Aminoácidos Excitadores/ultraestructura , Humanos , Transporte Iónico , Modelos Moleculares , Conformación Proteica , Protones , Sodio/metabolismo
2.
Elife ; 72018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30334738

RESUMEN

Human excitatory amino acid transporters (EAATs) take up the neurotransmitter glutamate in the brain and are essential to maintain excitatory neurotransmission. Our understanding of the EAATs' molecular mechanisms has been hampered by the lack of stability of purified protein samples for biophysical analyses. Here, we present approaches based on consensus mutagenesis to obtain thermostable EAAT1 variants that share up to ~95% amino acid identity with the wild type transporters, and remain natively folded and functional. Structural analyses of EAAT1 and the consensus designs using hydrogen-deuterium exchange linked to mass spectrometry show that small and highly cooperative unfolding events at the inter-subunit interface rate-limit their thermal denaturation, while the transport domain unfolds at a later stage in the unfolding pathway. Our findings provide structural insights into the kinetic stability of human glutamate transporters, and introduce general approaches to extend the lifetime of human membrane proteins for biophysical analyses.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Secuencia de Consenso , Transportador 1 de Aminoácidos Excitadores/química , Transportador 1 de Aminoácidos Excitadores/metabolismo , Temperatura , Secuencia de Aminoácidos , Medición de Intercambio de Deuterio , Humanos , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Neurotransmisores/metabolismo , Estabilidad Proteica , Subunidades de Proteína/química , Desplegamiento Proteico
3.
Nature ; 544(7651): 446-451, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28424515

RESUMEN

Human members of the solute carrier 1 (SLC1) family of transporters take up excitatory neurotransmitters in the brain and amino acids in peripheral organs. Dysregulation of the function of SLC1 transporters is associated with neurodegenerative disorders and cancer. Here we present crystal structures of a thermostabilized human SLC1 transporter, the excitatory amino acid transporter 1 (EAAT1), with and without allosteric and competitive inhibitors bound. The structures reveal architectural features of the human transporters, such as intra- and extracellular domains that have potential roles in transport function, regulation by lipids and post-translational modifications. The coordination of the allosteric inhibitor in the structures and the change in the transporter dynamics measured by hydrogen-deuterium exchange mass spectrometry reveal a mechanism of inhibition, in which the transporter is locked in the outward-facing states of the transport cycle. Our results provide insights into the molecular mechanisms underlying the function and pharmacology of human SLC1 transporters.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Transportador 1 de Aminoácidos Excitadores/antagonistas & inhibidores , Transportador 1 de Aminoácidos Excitadores/química , Sitio Alostérico/efectos de los fármacos , Cristalización , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Transportador 1 de Aminoácidos Excitadores/metabolismo , Humanos , Espectrometría de Masas , Modelos Moleculares , Dominios Proteicos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...