Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 2573, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142604

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. High levels of free fatty acids in the liver impair hepatic lysosomal acidification and reduce autophagic flux. We investigate whether restoration of lysosomal function in NAFLD recovers autophagic flux, mitochondrial function, and insulin sensitivity. Here, we report the synthesis of novel biodegradable acid-activated acidifying nanoparticles (acNPs) as a lysosome targeting treatment to restore lysosomal acidity and autophagy. The acNPs, composed of fluorinated polyesters, remain inactive at plasma pH, and only become activated in lysosomes after endocytosis. Specifically, they degrade at pH of ~6 characteristic of dysfunctional lysosomes, to further acidify and enhance the function of lysosomes. In established in vivo high fat diet mouse models of NAFLD, re-acidification of lysosomes via acNP treatment restores autophagy and mitochondria function to lean, healthy levels. This restoration, concurrent with reversal of fasting hyperglycemia and hepatic steatosis, indicates the potential use of acNPs as a first-in-kind therapeutic for NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Autofagia , Hígado/metabolismo , Lisosomas/metabolismo , Concentración de Iones de Hidrógeno
2.
Redox Biol ; 46: 102087, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34411987

RESUMEN

Beige adipocyte mitochondria contribute to thermogenesis by uncoupling and by ATP-consuming futile cycles. Since uncoupling may inhibit ATP synthesis, it is expected that expenditure through ATP synthesis is segregated to a disparate population of mitochondria. Recent studies in mouse brown adipocytes identified peridroplet mitochondria (PDM) as having greater ATP synthesis and pyruvate oxidation capacities, while cytoplasmic mitochondria have increased fatty acid oxidation and uncoupling capacities. However, the occurrence of PDM in humans and the processes that result in their expansion have not been elucidated. Here, we describe a novel high-throughput assay to quantify PDM that is successfully applied to white adipose tissue from mice and humans. Using this approach, we found that PDM content varies between white and brown fat in both species. We used adipose tissue from pheochromocytoma (Pheo) patients as a model of white adipose tissue browning, which is characterized by an increase in the capacity for energy expenditure. In contrast with control subjects, PDM content was robustly increased in the periadrenal fat of Pheo patients. Remarkably, bioenergetic changes associated with browning were primarily localized to PDM compared to cytoplasmic mitochondria (CM). PDM isolated from periadrenal fat of Pheo patients had increased ATP-linked respiration, Complex IV content and activity, and maximal respiratory capacity. We found similar changes in a mouse model of re-browning where PDM content in whitened brown adipose tissue was increased upon re-browning induced by decreased housing temperature. Taken together, this study demonstrates the existence of PDM as a separate functional entity in humans and that browning in both mice and humans is associated with a robust expansion of peri-droplet mitochondria characterized by increased ATP synthesis linked respiration.


Asunto(s)
Tejido Adiposo Pardo , Termogénesis , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo Energético , Humanos , Ratones , Mitocondrias/metabolismo
3.
Cell Calcium ; 97: 102416, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34062329

RESUMEN

NCLX, the mitochondrial Na+/Ca2+ transporter is a key player in Ca2+ signaling. However, its role in Na+ signaling is poorly understood. In this review we focus on Na+ signaling by NCLX, and discuss recent physiological and pathophysiological roles attributed to the Na+ influx into mitochondria.

5.
Commun Biol ; 4(1): 666, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34079053

RESUMEN

Calcium dynamics control synaptic transmission. Calcium triggers synaptic vesicle fusion, determines release probability, modulates vesicle recycling, participates in long-term plasticity and regulates cellular metabolism. Mitochondria, the main source of cellular energy, serve as calcium signaling hubs. Mitochondrial calcium transients are primarily determined by the balance between calcium influx, mediated by the mitochondrial calcium uniporter (MCU), and calcium efflux through the sodium/lithium/calcium exchanger (NCLX). We identified a human recessive missense SLC8B1 variant that impairs NCLX activity and is associated with severe mental retardation. On this basis, we examined the effect of deleting NCLX in mice on mitochondrial and synaptic calcium homeostasis, synaptic activity, and plasticity. Neuronal mitochondria exhibited basal calcium overload, membrane depolarization, and a reduction in the amplitude and rate of calcium influx and efflux. We observed smaller cytoplasmic calcium transients in the presynaptic terminals of NCLX-KO neurons, leading to a lower probability of release and weaker transmission. In agreement, synaptic facilitation in NCLX-KO hippocampal slices was enhanced. Importantly, deletion of NCLX abolished long term potentiation of Schaffer collateral synapses. Our results show that NCLX controls presynaptic calcium transients that are crucial for defining synaptic strength as well as short- and long-term plasticity, key elements of learning and memory processes.


Asunto(s)
Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Intercambiador de Sodio-Calcio/genética , Intercambiador de Sodio-Calcio/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Señalización del Calcio , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Femenino , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/química , Proteínas Mitocondriales/deficiencia , Plasticidad Neuronal , Neuronas/metabolismo , Linaje , Mutación Puntual , Terminales Presinápticos/metabolismo , Intercambiador de Sodio-Calcio/química , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología
6.
EMBO Rep ; 21(12): e49634, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33275313

RESUMEN

Combined fatty acid esterification and lipolysis, termed lipid cycling, is an ATP-consuming process that contributes to energy expenditure. Therefore, interventions that stimulate energy expenditure through lipid cycling are of great interest. Here we find that pharmacological and genetic inhibition of the mitochondrial pyruvate carrier (MPC) in brown adipocytes activates lipid cycling and energy expenditure, even in the absence of adrenergic stimulation. We show that the resulting increase in ATP demand elevates mitochondrial respiration coupled to ATP synthesis and fueled by lipid oxidation. We identify that glutamine consumption and the Malate-Aspartate Shuttle are required for the increase in Energy Expenditure induced by MPC inhibition in Brown Adipocytes (MAShEEBA). We thus demonstrate that energy expenditure through enhanced lipid cycling can be activated in brown adipocytes by decreasing mitochondrial pyruvate availability. We present a new mechanism to increase energy expenditure and fat oxidation in brown adipocytes, which does not require adrenergic stimulation of mitochondrial uncoupling.


Asunto(s)
Adipocitos Marrones , Ácido Pirúvico , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Metabolismo Energético , Lípidos , Mitocondrias/metabolismo , Ácido Pirúvico/metabolismo , Termogénesis , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
7.
Nat Commun ; 11(1): 3347, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620768

RESUMEN

A sharp increase in mitochondrial Ca2+ marks the activation of brown adipose tissue (BAT) thermogenesis, yet the mechanisms preventing Ca2+ deleterious effects are poorly understood. Here, we show that adrenergic stimulation of BAT activates a PKA-dependent mitochondrial Ca2+ extrusion via the mitochondrial Na+/Ca2+ exchanger, NCLX. Adrenergic stimulation of NCLX-null brown adipocytes (BA) induces a profound mitochondrial Ca2+ overload and impaired uncoupled respiration. Core body temperature, PET imaging of glucose uptake and VO2 measurements confirm a thermogenic defect in NCLX-null mice. We show that Ca2+ overload induced by adrenergic stimulation of NCLX-null BAT, triggers the mitochondrial permeability transition pore (mPTP) opening, leading to a remarkable mitochondrial swelling and cell death. Treatment with mPTP inhibitors rescue mitochondrial function and thermogenesis in NCLX-null BAT, while calcium overload persists. Our findings identify a key pathway through which BA evade apoptosis during adrenergic stimulation of uncoupling. NCLX deletion transforms the adrenergic pathway responsible for thermogenesis activation into a death pathway.


Asunto(s)
Adipocitos Marrones/patología , Tejido Adiposo Pardo/metabolismo , Norepinefrina/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Termogénesis/fisiología , Adipocitos Marrones/citología , Adipocitos Marrones/efectos de los fármacos , Tejido Adiposo Pardo/citología , Adrenérgicos/farmacología , Animales , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Células Cultivadas , Frío/efectos adversos , Ciclosporina/farmacología , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Femenino , Microscopía Intravital , Masculino , Ratones , Ratones Noqueados , Microscopía Fluorescente , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Cultivo Primario de Células , Transducción de Señal , Intercambiador de Sodio-Calcio/genética , Termogénesis/efectos de los fármacos
8.
Biochem J ; 477(2): 461-475, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32003437

RESUMEN

Mitochondrial turnover is required for proper cellular function. Both mitochondrial biogenesis and mitophagy are impaired in several degenerative and age-related diseases. The search for mitophagy activators recently emerged as a new therapeutical approach; however, there is a lack in suitable tools to follow mitochondrial turnover in a high-throughput manner. We demonstrate that the fluorescent protein, MitoTimer, is a reliable and robust probe to follow mitochondrial turnover. The screening of 15 000 small molecules led us to two chemically-related benzothiophenes that stimulate basal mitophagy in the beta-cell line, INS1. Enhancing basal mitophagy was associated with improved mitochondrial function, higher Complex I activity and Complex II and III expressions in INS1 cells, as well as better insulin secretion performance in mouse islets. The possibility of further enhancing mitophagy in the absence of mitochondrial stressors points to the existence of a 'basal mitophagy spare capacity'. To this end, we found two small molecules that can be used as models to better understand the physiological regulation of mitophagy.


Asunto(s)
Envejecimiento/genética , Secreción de Insulina/genética , Mitocondrias/genética , Mitofagia/genética , Envejecimiento/patología , Animales , Autofagia/genética , Línea Celular , Citometría de Flujo , Humanos , Ratones , Mitocondrias/efectos de los fármacos , Recambio Mitocondrial , Mitofagia/efectos de los fármacos , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Tiofenos/química , Tiofenos/farmacología
9.
FASEB J ; 33(12): 13176-13188, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31480917

RESUMEN

Changes in mitochondrial size and shape have been implicated in several physiologic processes, but their role in mitochondrial Ca2+ uptake regulation and overall cellular Ca2+ homeostasis is largely unknown. Here we show that modulating mitochondrial dynamics toward increased fusion through expression of a dominant negative (DN) form of the fission protein [dynamin-related protein 1 (DRP1)] markedly increased both mitochondrial Ca2+ retention capacity and Ca2+ uptake rates in permeabilized C2C12 cells. Similar results were seen using the pharmacological fusion-promoting M1 molecule. Conversely, promoting a fission phenotype through the knockdown of the fusion protein mitofusin (MFN)-2 strongly reduced the mitochondrial Ca2+ uptake speed and capacity in these cells. These changes were not dependent on modifications in mitochondrial calcium uniporter expression, inner membrane potentials, or the mitochondrial permeability transition. Implications of mitochondrial morphology modulation on cellular calcium homeostasis were measured in intact cells; mitochondrial fission promoted lower basal cellular calcium levels and lower endoplasmic reticulum (ER) calcium stores, as indicated by depletion with thapsigargin. Indeed, mitochondrial fission was associated with ER stress. Additionally, the calcium-replenishing process of store-operated calcium entry was impaired in MFN2 knockdown cells, whereas DRP1-DN-promoted fusion resulted in faster cytosolic Ca2+ increase rates. Overall, our results show a novel role for mitochondrial morphology in the regulation of mitochondrial Ca2+ uptake, which impacts cellular Ca2+ homeostasis.-Kowaltowski, A. J., Menezes-Filho, S. L., Assali, E. A., Gonçalves, I. G., Cabral-Costa, J. V., Abreu, P., Miller, N., Nolasco, P., Laurindo, F. R. M., Bruni-Cardoso, A., Shirihai, O. Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Línea Celular , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Homeostasis , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Mitocondrias/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Tapsigargina/farmacología
10.
FASEB J ; 33(3): 4154-4165, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30550357

RESUMEN

Chronic exposure of pancreatic ß cells to high concentrations of free fatty acids leads to lipotoxicity (LT)-mediated suppression of glucose-stimulated insulin secretion. This effect is in part caused by a decline in mitochondrial function as well as by a reduction in lysosomal acidification. Because both mitochondria and lysosomes can alter one another's function, it remains unclear which initiating dysfunction sets off the detrimental cascade of LT, ultimately leading to ß-cell failure. Here, we investigated the effects of restoring lysosomal acidity on mitochondrial function under LT. Our results show that LT induces a dose-dependent lysosomal alkalization accompanied by an increase in mitochondrial mass. This increase is due to a reduction in mitochondrial turnover as analyzed by MitoTimer, a fluorescent protein for which the emission is regulated by mitochondrial clearance rate. Mitochondrial oxygen consumption rate, citrate synthase activity, and ATP content are all reduced by LT. Restoration of lysosomal acidity using lysosome-targeted nanoparticles is accompanied by stimulation of mitochondrial turnover as revealed by mitophagy measurements and the recovery of mitochondrial mass. Remarkably, re-acidification restores citrate synthase activity and ATP content in an insulin secreting ß-cell line (INS-1). Furthermore, nanoparticle-mediated lysosomal reacidification rescues mitochondrial maximal respiratory capacity in both INS-1 cells and primary mouse islets. Therefore, our results indicate that mitochondrial dysfunction is downstream of lysosomal alkalization under lipotoxic conditions and that recovery of lysosomal acidity is sufficient to restore the bioenergetic defects.-Assali, E. A., Shlomo, D., Zeng, J., Taddeo, E. P., Trudeau, K. M., Erion, K. A., Colby, A. H., Grinstaff, M. W., Liesa, M., Las, G., Shirihai, O. S. Nanoparticle-mediated lysosomal reacidification restores mitochondrial turnover and function in ß cells under lipotoxicity.


Asunto(s)
Células Secretoras de Insulina/efectos de los fármacos , Lisosomas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Nanopartículas/administración & dosificación , Animales , Células Cultivadas , Ácidos Grasos no Esterificados/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos
11.
Cell Metab ; 27(4): 869-885.e6, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29617645

RESUMEN

Mitochondria associate with lipid droplets (LDs) in fat-oxidizing tissues, but the functional role of these peridroplet mitochondria (PDM) is unknown. Microscopic observation of interscapular brown adipose tissue reveals that PDM have unique protein composition and cristae structure and remain adherent to the LD in the tissue homogenate. We developed an approach to isolate PDM based on their adherence to LDs. Comparison of purified PDM to cytoplasmic mitochondria reveals that (1) PDM have increased pyruvate oxidation, electron transport, and ATP synthesis capacities; (2) PDM have reduced ß-oxidation capacity and depart from LDs upon activation of brown adipose tissue thermogenesis and ß-oxidation; (3) PDM support LD expansion as Perilipin5-induced recruitment of mitochondria to LDs increases ATP synthase-dependent triacylglyceride synthesis; and (4) PDM maintain a distinct protein composition due to uniquely low fusion-fission dynamics. We conclude that PDM represent a segregated mitochondrial population with unique structure and function that supports triacylglyceride synthesis.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Gotas Lipídicas/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Adipocitos/citología , Animales , Transporte de Electrón , Metabolismo Energético , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Proteínas Musculares/metabolismo , Oxidación-Reducción , Ácido Pirúvico/metabolismo , Termogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA