Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39172146

RESUMEN

Ethanol consumption induces thymic atrophy and affects T cell maturation in the thymus. However, the mechanisms underlying such effects still need to be fully understood. We attempted to investigate the role of mineralocorticoid receptors (MR) on ethanol-induced thymic atrophy, T cell maturation dysfunction, and the role of oxidative stress in such responses. Male Wistar Hannover rats were treated with ethanol (20%; in volume ratio) and/or potassium canrenoate, an antagonist of MR (MRA; 30 mg/kg/day, gavage) for five weeks. Blockade of MR prevented ethanol-induced increases in the number of double-positive (CD4+CD8+), CD8+ single-positive (CD4-CD8+), CD4+ single-positive (CD4+CD8-), and Foxp3+CD4+ (Treg) cells in the thymus. Ethanol increased NOX2-derived superoxide (O2•-), lipoperoxidation, and superoxide dismutase (SOD) activity in the thymus. Pretreatment with the MRA fully prevented these responses. Apocynin, an antioxidant, prevented ethanol-induced increases in the number of double-positive and CD8+ single-positive cells but failed to prevent the rise in the number of CD4+ single-positive and Treg cells induced by ethanol. Apocynin, but not the MRA, prevented thymic atrophy induced by ethanol. Our findings provided novel evidence for the participation of MR in thymic dysfunction induced by ethanol consumption. Oxidative stress mediates the increase in double-positive and CD8+ single-positive cells in response to MR activation, while positive regulation of CD4+ single-positive and Treg cells is independent of oxidative stress. Oxidative stress is a significant mechanism of thymic atrophy associated with ethanol consumption, but this response is independent of MR activation.

2.
Life Sci ; 338: 122361, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38158040

RESUMEN

AIMS: Overproduction of reactive oxygen species (ROS) is a pathologic hallmark of cyclophosphamide toxicity. For this reason, antioxidant compounds emerge as promising tools for preventing tissue damage induced by cyclophosphamide. We hypothesized that melatonin would display cytoprotective action in the vasculature by preventing cyclophosphamide-induced oxidative stress. MATERIALS AND METHODS: Male C57BL/6 mice (22-25 g) were injected with a single dose of cyclophosphamide (300 mg/kg; i.p.). Mice were pretreated or not with melatonin (10 mg/kg/day, i.p.), given during 4 days before cyclophosphamide injection. Functional (vascular reactivity) and oxidative/inflammatory patterns were evaluated at 24 h in resistance arteries. The antioxidant action of melatonin was assessed in vitro in cultured vascular smooth muscle cells (VSMCs) of mesenteric arteries. KEY FINDINGS: Cyclophosphamide induced ROS generation in both mesenteric arterial bed (MAB) and cultured VSMCs, and this was normalized by melatonin. Cyclophosphamide-induced ROS generation and lipoperoxidation in the bladder and kidney was also prevented by melatonin. Increased levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 were detected in the MAB of cyclophosphamide-treated mice, all of which were prevented by melatonin. Functional assays using second-order mesenteric arteries of cyclophosphamide-treated mice revealed a decrease in vascular contractility. Melatonin prevented vascular hypocontractility in the cyclophosphamide group. Melatonin partially prevented the decrease in myeloperoxidase (MPO) and N-acetyl-beta-D-glucosaminidase (NAG) activities in the MAB of the cyclophosphamide group. SIGNIFICANCE: Melatonin may constitute a novel and promising therapeutic approach for management of the toxic effects induced by cyclophosphamide in the vasculature.


Asunto(s)
Melatonina , Ratones , Masculino , Animales , Especies Reactivas de Oxígeno/farmacología , Melatonina/uso terapéutico , Antioxidantes/metabolismo , Ratones Endogámicos C57BL , Ciclofosfamida/toxicidad , Estrés Oxidativo , Arterias Mesentéricas/metabolismo
3.
Eur J Pharmacol ; 949: 175723, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059378

RESUMEN

The effects on blood pressure produced byethanol consumption include both vasoconstriction and activation of the renin-angiotensin-aldosterone system (RAAS), although the detailed relationship between these processes is yet to be accomplished. Here, we sought to investigate the contribution of mineralocorticoid receptors (MR) to ethanol-induced hypertension and vascular hypercontractility. We analyzed blood pressure and vascular function of male Wistar Hannover rats treated with ethanol for five weeks. The contribution of the MR pathway to the cardiovascular effects of ethanol was evaluated with potassium canrenoate, a MR antagonist (MRA). Blockade of MR prevented ethanol-induced hypertension and hypercontractility of endothelium-intact and -denuded aortic rings. Ethanol up-regulated cyclooxygenase (COX)2 and augmented vascular levels of both reactive oxygen species (ROS) and thromboxane (TX)B2, a stable metabolite of TXA2. These responses were abrogated by MR blockade. Hyperreactivity to phenylephrine induced by ethanol consumption was reversed by tiron [a scavenger of superoxide (O2∙-)], SC236 (a selective COX2 inhibitor) or SQ29548 (an antagonist of TP receptors). Treatment with the antioxidant apocynin prevented the vascular hypercontractility, as well as the increases in COX2 expression and TXA2 production induced by ethanol consumption. Our study has identified novel mechanisms through which ethanol consumption promotes its deleterious effects in the cardiovascular system. We provided evidence for a role of MR in the vascular hypercontractility and hypertension associated with ethanol consumption. The MR pathway triggers vascular hypercontractility through ROS generation, up-regulation of COX2 and overproduction of TXA2, which will ultimately induce vascular contraction.


Asunto(s)
Hipertensión , Receptores de Mineralocorticoides , Ratas , Animales , Masculino , Ciclooxigenasa 2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratas Wistar , Regulación hacia Arriba , Receptores de Mineralocorticoides/metabolismo , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Vasoconstricción , Etanol/efectos adversos , Endotelio Vascular
4.
Can J Physiol Pharmacol ; 99(12): 1324-1332, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34314655

RESUMEN

We tested the hypothesis that ethanol would aggravate the deleterious effects of sub-lethal cecal ligation and puncture (SL-CLP) sepsis in the cardiorenal system and that inhibition of inducible nitric oxide synthase (iNOS) would prevent such response. Male C57BL/6 mice were treated with ethanol for 12 weeks. One hour before SL-CLP surgery, mice were treated with N6-(1-iminoethyl)-lysine (L-NIL, 5 mg/kg, i.p.), a selective inhibitor of iNOS. A second dose of L-NIL was administered 24 h after SL-CLP surgery. Mice were killed 48 h post surgery and the blood, the renal cortex, and the left ventricle (LV) were collected for biochemical analysis. L-NIL attenuated the increase in serum creatinine levels induced by ethanol, but not by SL-CLP. Ethanol, but not SL-CLP, increased creatine kinase (CK)-MB activity and L-NIL did not prevent this response. In the renal cortex, L-NIL prevented the redox imbalance induced by ethanol and SL-CLP. Inhibition of iNOS also decreased lipoperoxidation induced by ethanol and SL-CLP in the LV. L-NIL prevented the increase of pro-inflammatory cytokines and reactive oxygen species induced by ethanol and (or) SL-CLP in the cardiorenal system, suggesting that iNOS modulated some of the molecular mechanisms that underlie the deleterious effects of both conditions in the cardiorenal system.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Etanol/efectos adversos , Ventrículos Cardíacos/metabolismo , Corteza Renal/metabolismo , Lisina/farmacología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Sepsis/etiología , Sepsis/prevención & control , Animales , Forma MB de la Creatina-Quinasa/metabolismo , Creatinina/sangre , Citocinas/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Mediadores de Inflamación/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Lisina/administración & dosificación , Masculino , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/fisiología , Especies Reactivas de Oxígeno/metabolismo
5.
J Pineal Res ; 70(2): e12710, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33332655

RESUMEN

Perivascular adipose tissue (PVAT) undergoes functional changes in obesity. Increased oxidative stress is a central mechanism whereby obesity induces loss of the anticontractile effect of PVAT. Melatonin is an antioxidant that displays vasoprotective action in cardiovascular disease. Here, we sought to investigate whether melatonin would restore the anticontractile effect of periaortic PVAT in obesity. Male Wistar Hannover rats were treated for 10 weeks with a high-calorie diet. Melatonin (5 mg/kg/d, p.o., gavage) was administered for 2 weeks. Functional findings showed that obesity-induced loss of the anticontractile effect of PVAT and treatment with melatonin reversed this response. Tiron [a scavenger of superoxide anion (O2 - )] restored the anticontractile effect of PVAT in aortas from obese rats, suggesting a role for reactive oxygen species (ROS) in such response. Decreased superoxide dismutase (SOD) activity and augmented levels of ROS were detected in periaortic PVAT from obese rats. These responses were accompanied by decreased levels of nitric oxide (NO) in PVAT. Treatment with melatonin restored SOD activity, decreased ROS levels, and increased NO bioavailability in PVAT from obese rats. Here, we first reported the beneficial effects of melatonin in periaortic PVAT in obesity. Melatonin reversed the adverse effects of obesity in PVAT that included overproduction of ROS, reduced SOD activity, and decreased bioavailability of NO. Therefore, PVAT may constitute an important target for the treatment of obesity-induced vascular dysfunction and melatonin emerges as a potential tool in the management of the vascular complications induced by obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Melatonina/uso terapéutico , Obesidad/tratamiento farmacológico , Tejido Adiposo/efectos de los fármacos , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
6.
Alcohol Alcohol ; 55(1): 3-10, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-31845992

RESUMEN

AIMS: We investigated the cardiac effects of ethanol withdrawal and the possible role of AT1 receptors in such response. METHODS: Male Wistar rats were treated with increasing doses of ethanol (3 to 9%, vol./vol.) for 21 days. The cardiac effects of ethanol withdrawal were investigated 48 h after abrupt discontinuation of ethanol. Some animals were orally treated with losartan (10 mg/kg/day), a selective AT1 receptor antagonist. RESULTS: Ethanol withdrawal did not affect serum levels of creatine kinase (CK)-MB. Losartan prevented ethanol withdrawal-induced increase in superoxide anion (O2•-) production in the left ventricle (LV). However, ethanol withdrawal did no alter the levels of thiobarbituric acid reactive substances (TBARS) or the expression of Nox1, Nox2 or Nox4 were found in the LV. Ethanol withdrawal reduced the concentration of hydrogen peroxide (H2O2) in the LV and this response was prevented by losartan. Ethanol withdrawal increased catalase activity in the LV and losartan attenuated this response. No changes on superoxide dismutase (SOD) activity or expression were detected in the LV during ethanol withdrawal. The expression of AT1, AT2 or angiotensin converting enzyme (ACE) was not affected by ethanol withdrawal. Similarly, no changes on the expression of ERK1/2, SAPK/JNK, COX-1 or COX-2 were found in the LV during ethanol withdrawal. CONCLUSIONS: Ethanol withdrawal altered the cardiac oxidative state through AT1-dependent mechanisms. Our findings showed a role for angiotensin II/AT1 receptors in the initial steps of the cardiac effects induced by ethanol withdrawal.


Asunto(s)
Etanol/efectos adversos , Ventrículos Cardíacos/metabolismo , Receptor de Angiotensina Tipo 1/biosíntesis , Síndrome de Abstinencia a Sustancias/metabolismo , Superóxidos/metabolismo , Animales , Catalasa/metabolismo , Forma MB de la Creatina-Quinasa/sangre , Ciclooxigenasa 1/biosíntesis , Ciclooxigenasa 2/biosíntesis , Peróxido de Hidrógeno/metabolismo , Losartán/farmacología , Masculino , Proteínas de la Membrana/biosíntesis , Proteína Quinasa 1 Activada por Mitógenos/biosíntesis , Proteína Quinasa 3 Activada por Mitógenos/biosíntesis , Proteína Quinasa 8 Activada por Mitógenos/biosíntesis , NADPH Oxidasas/biosíntesis , Peptidil-Dipeptidasa A/biosíntesis , Ratas , Receptor de Angiotensina Tipo 2/biosíntesis , Síndrome de Abstinencia a Sustancias/sangre , Síndrome de Abstinencia a Sustancias/prevención & control , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...