Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 384(6692): 178-184, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38603511

RESUMEN

Single-phase body-centered cubic (bcc) refractory medium- or high-entropy alloys can retain compressive strength at elevated temperatures but suffer from extremely low tensile ductility and fracture toughness. We examined the strength and fracture toughness of a bcc refractory alloy, NbTaTiHf, from 77 to 1473 kelvin. This alloy's behavior differed from that of comparable systems by having fracture toughness over 253 MPa·m1/2, which we attribute to a dynamic competition between screw and edge dislocations in controlling the plasticity at a crack tip. Whereas the glide and intersection of screw and mixed dislocations promotes strain hardening controlling uniform deformation, the coordinated slip of <111> edge dislocations with {110} and {112} glide planes prolongs nonuniform strain through formation of kink bands. These bands suppress strain hardening by reorienting microscale bands of the crystal along directions of higher resolved shear stress and continually nucleate to accommodate localized strain and distribute damage away from a crack tip.

2.
Nat Commun ; 15(1): 1402, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365867

RESUMEN

High or medium- entropy alloys (HEAs/MEAs) are multi-principal element alloys with equal atomic elemental composition, some of which have shown record-breaking mechanical performance. However, the link between short-range order (SRO) and the exceptional mechanical properties of these alloys has remained elusive. The local destruction of SRO by dislocation glide has been predicted to lead to a rejuvenated state with increased entropy and free energy, creating softer zones within the matrix and planar fault boundaries that enhance the ductility, but this has not been verified. Here, we integrate in situ nanomechanical testing with energy-filtered four-dimensional scanning transmission electron microscopy (4D-STEM) and directly observe the rejuvenation during cyclic mechanical loading in single crystal CrCoNi at room temperature. Surprisingly, stacking faults (SFs) and twin boundaries (TBs) are reversible in initial cycles but become irreversible after a thousand cycles, indicating SF energy reduction and rejuvenation. Molecular dynamics (MD) simulation further reveals that the local breakdown of SRO in the MEA triggers these SF reversibility changes. As a result, the deformation features in HEAs/MEAs remain planar and highly localized to the rejuvenated planes, leading to the superior damage tolerance characteristic in this class of alloys.

3.
Nano Lett ; 24(4): 1168-1175, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38251890

RESUMEN

Unveiling materials' corrosion pathways is significant for understanding the corrosion mechanisms and designing corrosion-resistant materials. Here, we investigate the corrosion behavior of Sn@Ni3Sn4 and Sn nanocrystals in an aqueous solution in real time by using high-resolution liquid cell transmission electron microscopy. Our direct observation reveals an unprecedented level of detail on the corrosion of Sn metal with/without a coating of Ni3Sn4 at the nanometric and atomic levels. The Sn@Ni3Sn4 nanocrystals exhibit "pitting corrosion", which is initiated at the defect sites in the Ni3Sn4 protective layer. The early stage isotropic etching transforms into facet-dependent etching, resulting in a cavity terminated with low-index facets. The Sn nanocrystals under fast etching kinetics show uniform corrosion, and smooth surfaces are obtained. Sn nanocrystals show "creeping-like" etching behavior and rough surfaces. This study provides critical insights into the impacts of coating, defects, and ion diffusion on corrosion kinetics and the resulting morphologies.

4.
Proc Natl Acad Sci U S A ; 121(5): e2314248121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38266045

RESUMEN

Interstitial atoms usually diffuse much faster than vacancies, which is often the root cause for the ineffective recombination of point defects in metals under irradiation. Here, via ab initio modeling of single-defect diffusion behavior in the equiatomic NiCoCrFe(Pd) alloy, we demonstrate an alloy design strategy that can reduce the diffusivity difference between the two types of point defects. The two diffusivities become almost equal after substituting the NiCoCrFe base alloy with Pd. The underlying mechanism is that Pd, with a much larger atomic size (hence larger compressibility) than the rest of the constituents, not only heightens the activation energy barrier (Ea) for interstitial motion by narrowing the diffusion channels but simultaneously also reduces Ea for vacancies due to less energy penalty required for bond length change between the initial and the saddle states. Our findings have a broad implication that the dynamics of point defects can be manipulated by taking advantage of the atomic size disparity, to facilitate point-defect annihilation that suppresses void formation and swelling, thereby improving radiation tolerance.

5.
Nano Lett ; 23(22): 10132-10139, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37909501

RESUMEN

Nanomotors in solution have many potential applications. However, it has been a significant challenge to realize the directional motion of nanomotors. Here, we report cadmium chloride tetrahydrate (CdCl2·4H2O) nanomotors with remarkable directional movement under electron beam irradiation. Using in situ liquid phase transmission electron microscopy, we show that the CdCl2·4H2O nanoparticle with asymmetric surface facets moves through the liquid with the flat end in the direction of motion. As the nanomotor morphology changes, the speed of movement also changes. Finite element simulation of the electric field and fluid velocity distribution around the nanomotor assists the understanding of ionic self-diffusiophoresis as a driving force for the nanomotor movement; the nanomotor generates its own local ion concentration gradient due to different chemical reactivities on different facets.

10.
Nat Commun ; 14(1): 2519, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130855

RESUMEN

Metallic alloys have played essential roles in human civilization due to their balanced strength and ductility. Metastable phases and twins have been introduced to overcome the strength-ductility tradeoff in face-centered cubic (FCC) high-entropy alloys (HEAs). However, there is still a lack of quantifiable mechanisms to predict good combinations of the two mechanical properties. Here we propose a possible mechanism based on the parameter κ, the ratio of short-ranged interactions between closed-pack planes. It promotes the formation of various nanoscale stacking sequences and enhances the work-hardening ability of the alloys. Guided by the theory, we successfully designed HEAs with enhanced strength and ductility compared with other extensively studied CoCrNi-based systems. Our results not only offer a physical picture of the strengthening effects but can also be used as a practical design principle to enhance the strength-ductility synergy in HEAs.

11.
Nat Commun ; 14(1): 988, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36813779

RESUMEN

Corrosion is a ubiquitous failure mode of materials. Often, the progression of localized corrosion is accompanied by the evolution of porosity in materials previously reported to be either three-dimensional or two-dimensional. However, using new tools and analysis techniques, we have realized that a more localized form of corrosion, which we call 1D wormhole corrosion, has previously been miscategorized in some situations. Using electron tomography, we show multiple examples of this 1D and percolating morphology. To understand the origin of this mechanism in a Ni-Cr alloy corroded by molten salt, we combined energy-filtered four-dimensional scanning transmission electron microscopy and ab initio density functional theory calculations to develop a vacancy mapping method with nanometer-resolution, identifying a remarkably high vacancy concentration in the diffusion-induced grain boundary migration zone, up to 100 times the equilibrium value at the melting point. Deciphering the origins of 1D corrosion is an important step towards designing structural materials with enhanced corrosion resistance.

12.
Chemistry ; 29(5): e202203052, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36411247

RESUMEN

Nesquehonite is a magnesium carbonate mineral relevant to carbon sequestration envisioned for carbon capture and storage of CO2 . Its chemical formula remains controversial today, assigned as either a hydrated magnesium carbonate [MgCO3 ⋅ 3H2 O], or a hydroxy- hydrated- magnesium bicarbonate [Mg(HCO3 )OH ⋅ 2H2 O]. The resolution of this controversy is central to understanding this material's thermodynamic, phase, and chemical behavior. In an NMR crystallography study, using rotational-echo double-resonance 13 C{1 H} (REDOR), 13 C-1 H distances are determined with precision, and the combination of 13 C static NMR lineshapes and density functional theory (DFT) calculations are used to model different H atomic coordinates. [MgCO3 ⋅ 3H2 O] is found to be accurate, and evidence from neutron powder diffraction bolsters these assignments. Refined H positions can help understand how H-bonding stabilizes this structure against dehydration to MgCO3 . More broadly, these results illustrate the power of NMR crystallography as a technique for resolving questions where X-ray diffraction is inconclusive.


Asunto(s)
Magnesio , Difracción de Neutrones , Magnesio/química , Cristalografía , Minerales/química , Cristalografía por Rayos X
13.
Nat Comput Sci ; 3(3): 221-229, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38177884

RESUMEN

In multicomponent materials, short-range order (SRO) is the development of correlated arrangements of atoms at the nanometer scale. Its impact in compositionally complex materials has stimulated an intense debate within the materials science community. Understanding SRO is critical to control the properties of technologically relevant materials, from metallic alloys to functional ceramics. In contrast to long-range order, quantitative characterization of the nature and spatial extent of SRO evades most of the experimentally available techniques. Simulations at the atomistic scale have full access to SRO but face the challenge of accurately sampling high-dimensional configuration spaces to identify the thermodynamic and kinetic conditions at which SRO is formed and what impact it has on material properties. Here we highlight recent progress in computational approaches, such as machine learning-based interatomic potentials, for quantifying and understanding SRO in compositionally complex materials. We briefly recap the key theoretical concepts and methods.

14.
Science ; 378(6623): 978-983, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36454850

RESUMEN

CrCoNi-based medium- and high-entropy alloys display outstanding damage tolerance, especially at cryogenic temperatures. In this study, we examined the fracture toughness values of the equiatomic CrCoNi and CrMnFeCoNi alloys at 20 kelvin (K). We found exceptionally high crack-initiation fracture toughnesses of 262 and 459 megapascal-meters½ (MPa·m½) for CrMnFeCoNi and CrCoNi, respectively; CrCoNi displayed a crack-growth toughness exceeding 540 MPa·m½ after 2.25 millimeters of stable cracking. Crack-tip deformation structures at 20 K are quite distinct from those at higher temperatures. They involve nucleation and restricted growth of stacking faults, fine nanotwins, and transformed epsilon martensite, with coherent interfaces that can promote both arrest and transmission of dislocations to generate strength and ductility. We believe that these alloys develop fracture resistance through a progressive synergy of deformation mechanisms, dislocation glide, stacking-fault formation, nanotwinning, and phase transformation, which act in concert to prolong strain hardening that simultaneously elevates strength and ductility, leading to exceptional toughness.

15.
J Chem Phys ; 157(9): 094705, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36075711

RESUMEN

We report the results of constant-potential molecular dynamics simulations of the double layer interface between molten 2LiF-BeF2 (FLiBe) and 23LiF-6NaF-21KF (FLiNaK) fluoride mixtures and idealized solid electrodes. Employing methods similar to those used in studies of chloride double layers, we compute the structure and differential capacitance of molten fluoride electric double layers as a function of applied voltage. The role of molten salt structure is probed through comparisons between FLiBe and FLiNaK, which serve as models for strong and weak associate-forming salts, respectively. In FLiBe, screening involves changes in Be-F-Be angles and alignment of the oligomers parallel to the electrode, while in FLiNaK, the electric field is screened mainly by rearrangement of individual ions, predominantly the polarizable potassium cation.

16.
Nat Commun ; 13(1): 2789, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589801

RESUMEN

High-entropy alloys (HEAs), although often presumed to be random solid solutions, have recently been shown to display nanometer-scale variations in the arrangements of their multiple chemical elements. Here, we study the effects of this compositional heterogeneity in HEAs on their mechanical properties using in situ compression testing in the transmission electron microscope (TEM), combined with molecular dynamics simulations. We report an anomalous size effect on the yield strength in HEAs, arising from such compositional heterogeneity. By progressively reducing the sample size, HEAs initially display the classical "smaller-is-stronger" phenomenon, similar to pure metals and conventional alloys. However, as the sample size is decreased below a critical characteristic length (~180 nm), influenced by the size-scale of compositional heterogeneity, a transition from homogeneous deformation to a heterogeneous distribution of planar slip is observed, coupled with an anomalous "smaller-is-weaker" size effect. Atomic-scale computational modeling shows these observations arise due to compositional fluctuations over a few nanometers. These results demonstrate the efficacy of influencing mechanical properties in HEAs through control of local compositional variations at the nanoscale.

17.
Nat Commun ; 12(1): 6158, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34697309

RESUMEN

Individually, increasing the concentration of either oxygen or aluminum has a deleterious effect on the ductility of titanium alloys. For example, extremely small amounts of interstitial oxygen can severely deteriorate the tensile ductility of titanium, particularly at cryogenic temperatures. Likewise, substitutional aluminum will decrease the ductility of titanium at low-oxygen concentrations. Here, we demonstrate that, counter-intuitively, significant additions of both Al and O substantially improves both strength and ductility, with a 6-fold increase in ductility for a Ti-6Al-0.3 O alloy as compared to a Ti-0.3 O alloy. The Al and O solutes act together to increase and sustain a high strain-hardening rate by modifying the planar slip that predominates into a delocalized, three-dimensional dislocation pattern. The mechanism can be attributed to decreasing stacking fault energy by Al, modification of the "shuffle" mechanism of oxygen-dislocation interaction by the repulsive Al-O interaction in Ti, and micro-segregation of Al and O by the same cause.

18.
Nat Commun ; 12(1): 4873, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381027

RESUMEN

Refractory high-entropy alloys (RHEAs) are designed for high elevated-temperature strength, with both edge and screw dislocations playing an important role for plastic deformation. However, they can also display a significant energetic driving force for chemical short-range ordering (SRO). Here, we investigate mechanisms underlying the mobilities of screw and edge dislocations in the body-centered cubic MoNbTaW RHEA over a wide temperature range using extensive molecular dynamics simulations based on a highly-accurate machine-learning interatomic potential. Further, we specifically evaluate how these mechanisms are affected by the presence of SRO. The mobility of edge dislocations is found to be enhanced by the presence of SRO, whereas the rate of double-kink nucleation in the motion of screw dislocations is reduced, although this influence of SRO appears to be attenuated at increasing temperature. Independent of the presence of SRO, a cross-slip locking mechanism is observed for the motion of screws, which provides for extra strengthening for refractory high-entropy alloy system.

19.
Science ; 372(6543): 729-733, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33986178

RESUMEN

Despite persistent and extensive observations of crystals with chiral shapes, the mechanisms underlying their formation are not well understood. Although past studies suggest that chiral shapes can form because of crystallization in the presence of chiral additives, or because of an intrinsic tendency that stems from the crystal structure, there are many cases in which these explanations are not suitable or have not been tested. Here, an investigation of model tellurium nanocrystals provides insights into the chain of chirality transfer between crystal structure and shape. We show that this transfer is mediated by screw dislocations, and shape chirality is not an outcome of the chiral crystal structure or ligands.

20.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33758102

RESUMEN

The presence, nature, and impact of chemical short-range order in the multi-principal element alloy CrCoNi are all topics of current interest and debate. First-principles calculations reveal that its origins are fundamentally magnetic, involving repulsion between like-spin Co-Cr and Cr-Cr pairs that is complemented by the formation of a magnetically aligned sublattice of second-nearest-neighbor Cr atoms. Ordering models following these principles are found to predict otherwise anomalous experimental measurements concerning both magnetization and atomic volumes across a range of compositions. In addition to demonstrating the impact of magnetic interactions and resulting chemical rearrangement, the possible explanation of experiments would imply that short-range order of this type is far more prevalent than previously realized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...