Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ocul Surf ; 30: 119-128, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37634571

RESUMEN

Aging is a complex biological process that is characterized by low-grade inflammation, called inflammaging. Aging affects multiple organs including eye and lacrimal gland. Tumor necrosis factor (TNF) is a pleiotropic cytokine that participates in inflammation, activation of proteases such as cathepsin S, and formation of ectopic lymphoid organs. Using genetic and pharmacological approaches, we investigated the role of TNF in age-related dry eye disease, emphasizing the ocular surface and lacrimal gland inflammation. Our results show the increased protein and mRNA levels of TNF in aged lacrimal glands, accompanied by increased TNF, IL1ß, IL-18, CCL5, CXCL1, IL-2, IL-2 receptor alpha (CD25), IFN-γ, IL-12p40, IL-17, and IL-10 proteins in tears of aged mice. Moreover, genetic loss of the Tnf-/- in mice decreased goblet cell loss and the development of ectopic lymphoid structures in the lacrimal gland compared to wild-type mice. This was accompanied by a decrease in cytokine production. Treatment of mice at an early stage of aging (12-14-month-old) with TNF inhibitor tanfanercept eye drops for eight consecutive weeks decreased cytokine levels in tears, improved goblet cell density, and decreased the marginal zone B cell frequency in the lacrimal gland compared to vehicle-treated animals. Our studies indicate that modulation of TNF during aging could be a novel strategy for age-related dry eye disease.


Asunto(s)
Síndromes de Ojo Seco , Aparato Lagrimal , Animales , Ratones , Citocinas/metabolismo , Síndromes de Ojo Seco/metabolismo , Aparato Lagrimal/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/uso terapéutico , Lágrimas/metabolismo , Inflamación/metabolismo , Modelos Animales de Enfermedad
2.
Microorganisms ; 11(7)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37512974

RESUMEN

Ocular infections can be medical emergencies that result in permanent visual impairment or blindness and loss of quality of life. Bacteria are a major cause of ocular infections. Effective treatment of ocular infections requires knowledge of which bacteria are the likely cause of the infection. This survey of ocular bacterial isolates and review of ocular pathogens is based on a survey of a collection of isolates banked over a ten-year span at the Dean McGee Eye Institute in Oklahoma. These findings illustrate the diversity of bacteria isolated from the eye, ranging from common species to rare and unique species. At all sampled sites, staphylococci were the predominant bacteria isolated. Pseudomonads were the most common Gram-negative bacterial isolate, except in vitreous, where Serratia was the most common Gram-negative bacterial isolate. Here, we discuss the range of ocular infections that these species have been documented to cause and treatment options for these infections. Although a highly diverse spectrum of species has been isolated from the eye, the majority of infections are caused by Gram-positive species, and in most infections, empiric treatments are effective.

3.
mSphere ; 8(4): e0004423, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37273201

RESUMEN

Bacteriophage lytic enzymes (i.e., phage lysins) are a trending alternative for general antibiotics to combat growing antimicrobial resistance. Gram-positive Bacillus cereus causes one of the most severe forms of intraocular infection, often resulting in complete vision loss. It is an inherently ß-lactamase-resistant organism that is highly inflammogenic in the eye, and antibiotics are not often beneficial as the sole therapeutic option for these blinding infections. The use of phage lysins as a treatment for B. cereus ocular infection has never been tested or reported. In this study, the phage lysin PlyB was tested in vitro, demonstrating rapid killing of vegetative B. cereus but not its spores. PlyB was also highly group specific and effectively killed the bacteria in various bacterial growth conditions, including ex vivo rabbit vitreous (Vit). Furthermore, PlyB demonstrated no cytotoxic or hemolytic activity toward human retinal cells or erythrocytes and did not trigger innate activation. In in vivo therapeutic experiments, PlyB was effective in killing B. cereus when administered intravitreally in an experimental endophthalmitis model and topically in an experimental keratitis model. In both models of ocular infection, the effective bactericidal property of PlyB prevented pathological damage to ocular tissues. Thus, PlyB was found to be safe and effective in killing B. cereus in the eye, greatly improving an otherwise devastating outcome. Overall, this study demonstrates that PlyB is a promising therapeutic option for B. cereus eye infections.IMPORTANCEEye infections from antibiotic-resistant Bacillus cereus are devastating and can result in blindness with few available treatment options. Bacteriophage lysins are an alternative to conventional antibiotics with the potential to control antibiotic-resistant bacteria. This study demonstrates that a lysin called PlyB can effectively kill B. cereus in two models of B. cereus eye infections, thus treating and preventing the blinding effects of these infections.


Asunto(s)
Fagos de Bacillus , Bacillus , Endoftalmitis , Infecciones Bacterianas del Ojo , Animales , Humanos , Conejos , Infecciones Bacterianas del Ojo/tratamiento farmacológico , Endoftalmitis/tratamiento farmacológico , Endoftalmitis/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
4.
Exp Eye Res ; 224: 109213, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36063964

RESUMEN

Bacillus cereus (B. cereus) endophthalmitis is a vision-threatening bacterial infection. Uncontrolled inflammatory responses are the hallmark of this disease which cause irreversible damage to the retina. We recently reported C-X-C chemokines as a vital modulators which impacted the pathogenesis of this disease. Here, we investigated the impact of two highly upregulated C-C chemokines, CCL2 and CCL3, on intraocular inflammation this disease. B. cereus was injected into the eyes of C57BL/6J (WT), CCL2-/-, and CCL3-/- mice to induce endophthalmitis. Infected eyes were examined for bacterial growth, retinal function, and inflammation. Bacterial growth in CCL2-/- and CCL3-/- mice were similar, but retained retinal function was greater in CCL2-/- and CCL3-/- eyes compared to that of C57BL/6J eyes. The retinal architecture of infected eyes of CCL2-/- mice were conserved for a longer period of time than in infected CCL3-/- eyes. Infected CCL2-/- and CCL3-/- eyes had less inflammation than did infected C57BL/6J eyes. Based on these results, we assessed the efficacies of intravitreal anti-CCL2 or anti-CCL3 with or without the antibiotic gatifloxacin. Compared to infected untreated eyes, there was significantly less inflammation and greater retention of retinal function in eyes treated with anti-CCL2 or anti-CCL3 with gatifloxacin. This study showed that B. cereus endophthalmitis in CCL2-/- mice had a better clinical outcome than in CCL3-/- mice. Intravitreal administration of anti-CCL2 and anti-CCL3 with gatifloxacin significantly reduced inflammation and provided protection of retinal function. These results suggest that CCL2 and CCL3 are prospective anti-inflammatory targets that should be tested along with other antibiotics for treating Bacillus and perhaps other forms of endophthalmitis.


Asunto(s)
Bacillus , Quimiocina CCL2 , Endoftalmitis , Infecciones Bacterianas del Ojo , Uveítis , Animales , Ratones , Antibacterianos/uso terapéutico , Bacillus cereus , Quimiocina CCL3/genética , Electrorretinografía , Endoftalmitis/tratamiento farmacológico , Endoftalmitis/microbiología , Infecciones Bacterianas del Ojo/tratamiento farmacológico , Infecciones Bacterianas del Ojo/microbiología , Gatifloxacina/uso terapéutico , Inflamación , Ratones Endogámicos C57BL , Quimiocina CCL2/genética
5.
Invest Ophthalmol Vis Sci ; 62(14): 14, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34784411

RESUMEN

Purpose: The purpose of this study was to explore the C-X-C chemokines CXCL2 and CXCL10 as potential anti-inflammatory targets for Bacillus endophthalmitis. Methods: Bacillus endophthalmitis was induced in C57BL/6J, CXCL2-/-, and CXCL10-/- mice. At specific times postinfection, eyes were analyzed for Bacillus, retinal function, and inflammation. The efficacies of intravitreal anti-CXCL2 and anti-CXCL10 with or without gatifloxacin in B. cereus endophthalmitis were also assessed using the same techniques. Results: Despite similar Bacillus growth in eyes of C57BL/6J, CXCL2-/-, and CXCL10-/- mice, retinal function retention was greater in eyes of CXCL2-/- and CXCL10-/- mice compared to that of C57BL/6J mice. Neutrophil migration into eyes of CXCL2-/- and CXCL10-/- mice was reduced to a greater degree compared to that of eyes of C57BL/6J mice. Infected CXCL2-/- and CXCL10-/- mouse eyes had significantly less inflammation compared to that of C57BL/6J eyes. Retinal structures in infected eyes of CXCL2-/- mice were preserved for a longer time than in CXCL10-/- eyes. Compared to untreated eyes, there was less inflammation and significant retention of retinal function in eyes treated with anti-CXCL2 and anti-CXCL10 with or without gatifloxacin. Conclusions: For Bacillus endophthalmitis, the absence of CXCL2 or CXCL10 in mice resulted in retained retinal function and less inflammation. The absence of CXCL2 led to a better clinical outcome than the absence of CXCL10. The use of anti-CXCL2 and anti-CXCL10 limited inflammation during B. cereus endophthalmitis. These results highlight the utility of CXCL2 and CXCL10 as potential targets for anti-inflammatory therapy that can be tested in conjunction with antibiotics for improving treating Bacillus endophthalmitis.


Asunto(s)
Bacillus cereus/crecimiento & desarrollo , Quimiocina CXCL10/fisiología , Quimiocina CXCL2/fisiología , Endoftalmitis/fisiopatología , Infecciones Bacterianas del Ojo/fisiopatología , Infecciones por Bacterias Grampositivas/fisiopatología , Inflamación/fisiopatología , Animales , Antibacterianos/uso terapéutico , Anticuerpos Monoclonales/farmacología , Bacillus cereus/aislamiento & purificación , Quimiocinas CXC/fisiología , Recuento de Colonia Microbiana , Modelos Animales de Enfermedad , Electrorretinografía , Endoftalmitis/tratamiento farmacológico , Endoftalmitis/microbiología , Infecciones Bacterianas del Ojo/tratamiento farmacológico , Infecciones Bacterianas del Ojo/microbiología , Femenino , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/microbiología , Inflamación/tratamiento farmacológico , Inflamación/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Retina/fisiopatología
6.
Infect Immun ; 89(10): e0020121, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34097460

RESUMEN

Endophthalmitis is a devastating infection that can cause blindness. Over half of Bacillus endophthalmitis cases result in significant loss of useful vision. Bacillus produces many virulence factors that may contribute to retinal damage and robust inflammation. We analyzed Bacillus immune inhibitor A (InhA) metalloproteases in the context of this disease, hypothesizing that InhAs contribute to Bacillus intraocular virulence and inflammation. We analyzed phenotypes and infectivity of wild-type (WT), InhA1-deficient (ΔinhA1), InhA2-deficient (ΔinhA2), or InhA1, A2, and A3-deficient (ΔinhA1-3) Bacillus thuringiensis. In vitro analysis of growth, proteolysis, and cytotoxicity were compared. WT and InhA mutants were similarly cytotoxic to retinal cells. The ΔinhA1 and ΔinhA2 mutants entered log-phase growth earlier than WT B. thuringiensis. Proteolysis by the ΔinhA1-3 mutant was decreased, but this strain grew similar to WT in vitro. Experimental endophthalmitis was initiated by intravitreally infecting C57BL/6J mice with 200 CFU of WT B. thuringiensis or InhA mutants. Eyes were analyzed for intraocular Bacillus and myeloperoxidase concentrations, retinal function loss, and gross histological changes. Eyes infected with the ΔinhA1 or ΔinhA2 mutant strains contained greater numbers of bacteria than eyes infected with WT throughout the infection course. Eyes infected with single mutants had inflammation and retinal function loss similar to eyes infected with the WT strain. Eyes infected with the ΔinhA1-3 mutant cleared the infection. Quantitative real-time PCR (qRT-PCR) results suggested that there may be compensatory expression of the other InhAs in the single InhA mutant. These results indicate that together, the InhA metalloproteases contribute to the severity of infection and inflammation in Bacillus endophthalmitis.


Asunto(s)
Bacillus thuringiensis/inmunología , Endoftalmitis/inmunología , Metaloendopeptidasas/inmunología , Metaloproteasas/inmunología , Virulencia/inmunología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Endoftalmitis/microbiología , Infecciones Bacterianas del Ojo/inmunología , Infecciones Bacterianas del Ojo/microbiología , Humanos , Inflamación/inmunología , Inflamación/microbiología , Ratones , Ratones Endogámicos C57BL , Retina/inmunología , Retina/microbiología
7.
J Vis Exp ; (168)2021 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-33616100

RESUMEN

Intraocular bacterial infections are a danger to the vision. Researchers use animal models to investigate the host and bacterial factors and immune response pathways associated with infection to identify viable therapeutic targets and to test drugs to prevent blindness. The intravitreal injection technique is used to inject organisms, drugs, or other substances directly into the vitreous cavity in the posterior segment of the eye. Here, we demonstrated this injection technique to initiate infection in the mouse eye and the technique of quantifying intraocular bacteria. Bacillus cereus was grown in brain heart infusion liquid media for 18 hours and resuspended to a concentration 100 colony forming units (CFU)/0.5 µL. A C57BL/6J mouse was anesthetized using a combination of ketamine and xylazine. Using a picoliter microinjector and glass capillary needles, 0.5 µL of the Bacillus suspension was injected into the mid vitreous of the mouse eye. The contralateral control eye was either injected with sterile media (surgical control) or was not injected (absolute control). At 10 hours post infection, mice were euthanized, and eyes were harvested using sterile surgical tweezers and placed into a tube containing 400 µL sterile PBS and 1 mm sterile glass beads. For ELISAs or myeloperoxidase assays, proteinase inhibitor was added to the tubes. For RNA extraction, the appropriate lysis buffer was added. Eyes were homogenized in a tissue homogenizer for 1-2 minutes. Homogenates were serially diluted 10-fold in PBS and track diluted onto agar plates. The remainder of the homogenates were stored at -80 °C for additional assays. Plates were incubated for 24 hours and CFU per eye was quantified. These techniques result in reproducible infections in mouse eyes and facilitate quantitation of viable bacteria, the host immune response, and omics of host and bacterial gene expression.


Asunto(s)
Endoftalmitis/microbiología , Infecciones Bacterianas del Ojo/microbiología , Animales , Bacillus cereus/fisiología , Bacillus cereus/ultraestructura , Recuento de Colonia Microbiana , Modelos Animales de Enfermedad , Ojo/microbiología , Ojo/patología , Inyecciones Intravítreas , Ratones Endogámicos C57BL , Preservación Biológica
8.
Invest Ophthalmol Vis Sci ; 61(13): 17, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33180117

RESUMEN

Purpose: To explore the consequences of innate interference on intraocular inflammatory responses during Bacillus endophthalmitis. Methods: Bacillus endophthalmitis was induced in mice. Innate immune pathway activation was interfered by injecting S layer protein-deficient (∆slpA) B. thuringiensis or by treating wild-type (WT)-infected mice with a TLR2/4 inhibitor (WT+OxPAPC). At 10 hours postinfection, eyes were harvested and RNA was purified. A NanoString murine inflammation panel was used to compare gene expression in WT-infected, WT+OxPAPC, ∆slpA-infected, and uninfected eyes. Results: In WT-infected eyes, 56% of genes were significantly upregulated compared to uninfected controls. Compared to WT-infected eyes, the expression of 27% and 50% of genes were significantly reduced in WT+OxPAPC and ∆slpA-infected eyes, respectively. Expression of 61 genes that were upregulated in WT-infected eyes was decreased in WT+OxPAPC and ∆slpA-infected eyes. Innate interference resulted in blunted expression of complement factors (C3, Cfb, and C6) and several innate pathway genes (TLRs 2, 4, 6, and 8, MyD88, Nod2, Nlrp3, NF-κB, STAT3, RelA, RelB, and Ptgs2). Innate interference also reduced the expression of several inflammatory cytokines (CSF2, CSF3, IL-6, IL-1ß, IL-1α, TNFα, IL-23α, TGFß1, and IL-12ß) and chemokines (CCL2, CCL3, and CXCLs 1, 2, 3, 5, 9, and 10). All of the aforementioned genes were significantly upregulated in WT-infected eyes. Conclusions: These results suggest that interfering with innate activation significantly reduced the intraocular inflammatory response in Bacillus endophthalmitis. This positive clinical outcome could be a strategy for anti-inflammatory therapy of an infection typically refractory to corticosteroid treatment.


Asunto(s)
Bacillus thuringiensis/fisiología , Endoftalmitis/prevención & control , Infecciones Bacterianas del Ojo/prevención & control , Infecciones por Bacterias Grampositivas/prevención & control , Inmunidad Innata/efectos de los fármacos , Inflamación/prevención & control , Fosfatidilcolinas/farmacología , Animales , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Endoftalmitis/inmunología , Endoftalmitis/microbiología , Infecciones Bacterianas del Ojo/inmunología , Infecciones Bacterianas del Ojo/microbiología , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/microbiología , Inflamación/inmunología , Inflamación/microbiología , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Neutrófilos/fisiología , Receptor Toll-Like 2/antagonistas & inhibidores , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/metabolismo
9.
Front Immunol ; 11: 215, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117322

RESUMEN

Bacillus endophthalmitis is a severe intraocular infection. Hallmarks of Bacillus endophthalmitis include robust inflammation and rapid loss of vision. We reported that the absence of Bacillus surface layer protein (SLP) significantly blunted endophthalmitis severity. Here, we further investigated SLP in the context of Bacillus-retinal cell interactions and innate immune pathways to explore the mechanisms by which SLP contributes to intraocular inflammation. We compared phenotypes of Wild-type (WT) and SLP deficient (ΔslpA) Bacillus thuringiensis by analyzing bacterial adherence to and phagocytosis by human retinal Muller cells and phagocytosis by mouse neutrophils. Innate immune receptor activation by the Bacillus envelope and purified SLP was analyzed using TLR2/4 reporter cell lines. A synthetic TLR2/4 inhibitor was used as a control for this receptor activation. To induce endophthalmitis, mouse eyes were injected intravitreally with 100 CFU WT or ΔslpA B. thuringiensis. A group of WT infected mice was treated intravitreally with a TLR2/4 inhibitor at 4 h postinfection. At 10 h postinfection, infected eyes were analyzed for viable bacteria, inflammation, and retinal function. We observed that B. thuringiensis SLPs contributed to retinal Muller cell adherence, and protected this pathogen from Muller cell- and neutrophil-mediated phagocytosis. We found that B. thuringiensis envelope activated TLR2 and, surprisingly, TLR4, suggesting the presence of a surface-associated TLR4 agonist in Bacillus. Further investigation showed that purified SLP from B. thuringiensis activated TLR4, as well as TLR2 in vitro. Growth of WT B. thuringiensis was significantly higher and caused greater inflammation in untreated eyes than in eyes treated with the TLR2/4 inhibitor. Retinal function analysis also showed greater retention of A-wave and B-wave function in infected eyes treated with the TLR2/4 inhibitor. The TLR2/4 inhibitor was not antibacterial in vitro, and did not cause inflammation when injected into uninfected eyes. Taken together, these results suggest a potential role for Bacillus SLP in host-bacterial interactions, as well as in endophthalmitis pathogenesis via TLR2- and TLR4-mediated pathways.


Asunto(s)
Bacillus thuringiensis/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Endoftalmitis/inmunología , Infecciones por Bacterias Grampositivas/inmunología , Inmunidad Innata/genética , Glicoproteínas de Membrana/metabolismo , Animales , Adhesión Bacteriana/genética , Proteínas de la Membrana Bacteriana Externa/genética , Modelos Animales de Enfermedad , Endoftalmitis/tratamiento farmacológico , Células Ependimogliales/metabolismo , Infecciones por Bacterias Grampositivas/microbiología , Células HL-60 , Humanos , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Fagocitosis/genética , Fosfatidilcolinas/farmacología , Fosfatidilcolinas/uso terapéutico , Células Fotorreceptoras de Vertebrados/metabolismo , Epitelio Pigmentado de la Retina/citología , Receptor Toll-Like 2/antagonistas & inhibidores , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/metabolismo
10.
Invest Ophthalmol Vis Sci ; 60(12): 3727-3739, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31479113

RESUMEN

Purpose: Bacillus causes a sight-threating infection of the posterior segment of the eye. The robust intraocular inflammatory response in this disease is likely activated via host innate receptor interactions with components of the Bacillus cell envelope. S-layer proteins (SLPs) of some Gram-positive pathogens contribute to the pathogenesis of certain infections. The potential contributions of SLPs in eye infection pathogenesis have not been considered. Here, we explored the role of a Bacillus SLP (SlpA) in endophthalmitis pathogenesis. Methods: The phenotypes and infectivity of wild-type (WT) and S-layer deficient (ΔslpA) Bacillus thuringiensis were compared. Experimental endophthalmitis was induced in C57BL/6J mice by intravitreally injecting 100-CFU WT or ΔslpA B. thuringiensis. Infected eyes were analyzed by bacterial counts, retinal function analysis, histology, and inflammatory cell influx. SLP-induced inflammation was also analyzed in vitro. Muller cells (MIO-M1) were treated with purified SLP. Nuclear factor-κB (NF-κB) DNA binding was measured by ELISA and expression of proinflammatory mediators from Muller cells was measured by RT-qPCR. Results: Tested phenotypes of WT and ΔslpA B. thuringiensis were similar, with the exception of absence of the S-layer in the ΔslpA mutant. Intraocular growth of WT and ΔslpA B. thuringiensis was also similar. However, eyes infected with the ΔslpA mutant had significantly reduced inflammatory cell influx, less inflammatory damage to the eyes, and significant retention of retinal function compared with WT-infected eyes. SLP was also a potent stimulator of the NF-κB pathway and induced the expression of proinflammatory mediators (IL6, TNFα, CCL2, and CXCL-1) in human retinal Muller cells. Conclusions: Taken together, our results suggest that SlpA contributes to the pathogenesis of Bacillus endophthalmitis, potentially by triggering innate inflammatory pathways in the retina.


Asunto(s)
Bacillus thuringiensis/patogenicidad , Proteínas Bacterianas/fisiología , Endoftalmitis/microbiología , Infecciones Bacterianas del Ojo/microbiología , Infecciones por Bacterias Grampositivas/microbiología , Glicoproteínas de Membrana/fisiología , Animales , Recuento de Colonia Microbiana , Citocinas/metabolismo , Electrorretinografía , Endoftalmitis/metabolismo , Endoftalmitis/patología , Ensayo de Inmunoadsorción Enzimática , Células Ependimogliales/microbiología , Infecciones Bacterianas del Ojo/metabolismo , Infecciones Bacterianas del Ojo/patología , Infecciones por Bacterias Grampositivas/metabolismo , Infecciones por Bacterias Grampositivas/patología , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Modelos Animales , FN-kappa B/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/microbiología , Retina/fisiopatología , Virulencia/fisiología
11.
Toxins (Basel) ; 11(6)2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31248125

RESUMEN

Staphylococcus aureus (S. aureus) is a common pathogen of the eye, capable of infecting external tissues such as the tear duct, conjunctiva, and the cornea, as well the inner and more delicate anterior and posterior chambers. S. aureus produces numerous toxins and enzymes capable of causing profound damage to tissues and organs, as well as modulating the immune response to these infections. Unfortunately, in the context of ocular infections, this can mean blindness for the patient. The role of α-toxin in corneal infection (keratitis) and infection of the interior of the eye (endophthalmitis) has been well established by comparing virulence in animal models and α-toxin-deficient isogenic mutants with their wild-type parental strains. The importance of other toxins, such as ß-toxin, γ-toxin, and Panton-Valentine leukocidin (PVL), have been analyzed to a lesser degree and their roles in eye infections are less clear. Other toxins such as the phenol-soluble modulins have yet to be examined in any animal models for their contributions to virulence in eye infections. This review discusses the state of current knowledge of the roles of S. aureus toxins in eye infections and the controversies existing as a result of the use of different infection models. The strengths and limitations of these ocular infection models are discussed, as well as the need for physiological relevance in the study of staphylococcal toxins in these models.


Asunto(s)
Toxinas Bacterianas/toxicidad , Staphylococcus aureus , Animales , Córnea/efectos de los fármacos , Córnea/patología , Infecciones Bacterianas del Ojo , Humanos , Inflamación/inducido químicamente
12.
Exp Eye Res ; 159: 69-76, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28336259

RESUMEN

Bacterial endophthalmitis is a potentially blinding intraocular infection. The bacterium Bacillus cereus causes a devastating form of this disease which progresses rapidly, resulting in significant inflammation and loss of vision within a few days. The outer surface of B. cereus incites the intraocular inflammatory response, likely through interactions with innate immune receptors such as TLRs. This study analyzed the role of B. cereus pili, adhesion appendages located on the bacterial surface, in experimental endophthalmitis. To test the hypothesis that the presence of pili contributed to intraocular inflammation and virulence, we analyzed the progress of experimental endophthalmitis in mouse eyes infected with wild type B. cereus (ATCC 14579) or its isogenic pilus-deficient mutant (ΔbcpA-srtD-bcpB or ΔPil). One hundred CFU were injected into the mid-vitreous of one eye of each mouse. Infections were analyzed by quantifying intraocular bacilli and retinal function loss, and by histology from 0 to 12 h postinfection. In vitro growth and hemolytic phenotypes of the infecting strains were also compared. There was no difference in hemolytic activity (1:8 titer), motility, or in vitro growth (p > 0.05, every 2 h, 0-18 h) between wild type B. cereus and the ΔPil mutant. However, infected eyes contained greater numbers of wild type B. cereus than ΔPil during the infection course (p ≤ 0.05, 3-12 h). Eyes infected with wild type B. cereus experienced greater losses in retinal function than eyes infected with the ΔPil mutant, but the differences were not always significant. Eyes infected with ΔPil or wild type B. cereus achieved similar degrees of severe inflammation. The results indicated that the intraocular growth of pilus-deficient B. cereus may have been better controlled, leading to a trend of greater retinal function in eyes infected with the pilus-deficient strain. Although this difference was not enough to significantly alter the severity of the inflammatory response, these results suggest a potential role for pili in protecting B. cereus from clearance during the early stages of endophthalmitis, which is a newly described virulence mechanism for this organism and this infection.


Asunto(s)
Bacillus cereus/patogenicidad , Endoftalmitis/microbiología , Infecciones Bacterianas del Ojo/microbiología , Animales , Humor Acuoso/microbiología , Modelos Animales de Enfermedad , Electrorretinografía , Endoftalmitis/diagnóstico , Infecciones Bacterianas del Ojo/diagnóstico , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Retina/microbiología , Retina/patología , Retina/fisiopatología
13.
J Leukoc Biol ; 100(5): 1125-1134, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27286792

RESUMEN

During intraocular bacterial infections, the primary innate responders are neutrophils, which may cause bystander damage to the retina or perturb the clarity of the visual axis. We hypothesized that cytokine IL-6 and chemokine CXCL1 contributed to rapid neutrophil recruitment during Bacillus cereus endophthalmitis, a severe form of intraocular infection that is characterized by explosive inflammation and retinal damage that often leads to rapid vision loss. To test this hypothesis, we compared endophthalmitis pathogenesis in C57BL/6J, IL-6-/-, and CXCL1-/- mice. Bacterial growth in eyes of CXCL1-/-, IL-6-/-, and C67BL/6J mice was similar. Retinal function retention was greater in eyes of IL-6-/- and CXCL1-/- mice compared with that of C57BL/6J, despite these eyes having similar bacterial burdens. Neutrophil influx into eyes of CXCL1-/- mice was reduced to a greater degree compared with that of eyes of IL6-/- mice. Histology confirmed significantly less inflammation in eyes of CXCL1-/- mice, but similar degrees of inflammation in IL6-/- and C57BL/6J eyes. Because inflammation was reduced in eyes of infected CXCL1-/- mice, we tested the efficacy of anti-CXCL1 in B. cereus endophthalmitis. Retinal function was retained to a greater degree and there was less overall inflammation in eyes treated with anti-CXCL1, which suggested that anti-CXCL1 may have therapeutic efficacy in limiting inflammation during B. cereus endophthalmitis. Taken together, our results indicate that absence of IL-6 did not affect overall pathogenesis of endophthalmitis. In contrast, absence of CXCL1, in CXCL1-/- mice or after anti-CXCL1 treatment, led to an improved clinical outcome. Our findings suggest a potential benefit in targeting CXCL1 to control inflammation during B. cereus and perhaps other types of intraocular infections.


Asunto(s)
Bacillus cereus , Quimiocina CXCL1/fisiología , Quimiotaxis de Leucocito/fisiología , Endoftalmitis/inmunología , Infecciones Bacterianas del Ojo/inmunología , Interleucina-6/fisiología , Neutrófilos/inmunología , Animales , Anticuerpos Monoclonales/farmacología , Bacillus cereus/crecimiento & desarrollo , Bacillus cereus/aislamiento & purificación , Carga Bacteriana , Quimiocina CXCL1/antagonistas & inhibidores , Quimiocina CXCL1/deficiencia , Quimiocina CXCL1/genética , Electrorretinografía , Endoftalmitis/microbiología , Infecciones Bacterianas del Ojo/microbiología , Mediadores de Inflamación/análisis , Interleucina-6/deficiencia , Interleucina-6/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Peroxidasa/análisis , Retina/patología
14.
Am J Ophthalmol Case Rep ; 1: 5-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27158679

RESUMEN

PURPOSE: To report a case of polymicrobial keratitis caused by Panotea agglomerans, Escherichia vulneris and coagulase-negative Staphylococcus in a patient who cleaned their extended wear contact lenses with only tap water for 2 weeks. METHODS: Case report. RESULTS: An adult presented with a painful red eye after wearing the same contact lenses for two weeks. The patient admitted to taking the contacts out in the evening and cleaning them with tap water before reapplying them in the morning. Exam revealed a 2.5 mm paracentral corneal ulcer in the left eye. Culture results from corneal scrapings were positive for Panotea agglomerans, Escherichia vulneris and coagulase-negative Staphylococcus. CONCLUSIONS: This is the first report of Panotea agglomerans and Escherichia vulneris keratitis in association with contact lens wear. Both strains of Panotea agglomerans and Escherichia vulneris were pansensitive to all tested antibiotics.

15.
PLoS One ; 11(5): e0154560, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27195776

RESUMEN

The blood-retinal barrier (BRB) functions to maintain the immune privilege of the eye, which is necessary for normal vision. The outer BRB is formed by tightly-associated retinal pigment epithelial (RPE) cells which limit transport within the retinal environment, maintaining retinal function and viability. Retinal microvascular complications and RPE dysfunction resulting from diabetes and diabetic retinopathy cause permeability changes in the BRB that compromise barrier function. Diabetes is the major predisposing condition underlying endogenous bacterial endophthalmitis (EBE), a blinding intraocular infection resulting from bacterial invasion of the eye from the bloodstream. However, significant numbers of EBE cases occur in non-diabetics. In this work, we hypothesized that dysfunction of the outer BRB may be associated with EBE development. To disrupt the RPE component of the outer BRB in vivo, sodium iodate (NaIO3) was administered to C57BL/6J mice. NaIO3-treated and untreated mice were intravenously injected with 108 colony forming units (cfu) of Staphylococcus aureus or Klebsiella pneumoniae. At 4 and 6 days postinfection, EBE was observed in NaIO3-treated mice after infection with K. pneumoniae and S. aureus, although the incidence was higher following S. aureus infection. Invasion of the eye was observed in control mice following S. aureus infection, but not in control mice following K. pneumoniae infection. Immunohistochemistry and FITC-dextran conjugate transmigration assays of human RPE barriers after infection with an exoprotein-deficient agr/sar mutant of S. aureus suggested that S. aureus exoproteins may be required for the loss of the tight junction protein, ZO-1, and for permeability of this in vitro barrier. Our results support the clinical findings that for both pathogens, complications which result in BRB permeability increase the likelihood of bacterial transmigration from the bloodstream into the eye. For S. aureus, however, BRB permeability is not required for the development of EBE, but toxin production may facilitate EBE pathogenesis.


Asunto(s)
Barrera Hematorretinal/microbiología , Infecciones Bacterianas del Ojo/microbiología , Epitelio Pigmentado de la Retina/microbiología , Angiografía , Animales , Supervivencia Celular , Células Cultivadas , Colorantes/química , Dextranos , Retinopatía Diabética/patología , Endoftalmitis/microbiología , Azul de Evans/química , Fluoresceína-5-Isotiocianato/análogos & derivados , Humanos , Inmunohistoquímica , Yodatos/química , Klebsiella pneumoniae , Masculino , Ratones , Ratones Endogámicos C57BL , Epitelio Pigmentado de la Retina/citología , Vasos Retinianos/patología , Staphylococcus aureus
16.
Prog Retin Eye Res ; 54: 30-48, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27154427

RESUMEN

Bacterial endophthalmitis is an infection and inflammation of the posterior segment of the eye which can result in significant loss of visual acuity. Even with prompt antibiotic, anti-inflammatory and surgical intervention, vision and even the eye itself may be lost. For the past century, experimental animal models have been used to examine various aspects of the pathogenesis and pathophysiology of bacterial endophthalmitis, to further the development of anti-inflammatory treatment strategies, and to evaluate the pharmacokinetics and efficacies of antibiotics. Experimental models allow independent control of many parameters of infection and facilitate systematic examination of infection outcomes. While no single animal model perfectly reproduces the human pathology of bacterial endophthalmitis, investigators have successfully used these models to understand the infectious process and the host response, and have provided new information regarding therapeutic options for the treatment of bacterial endophthalmitis. This review highlights experimental animal models of endophthalmitis and correlates this information with the clinical setting. The goal is to identify knowledge gaps that may be addressed in future experimental and clinical studies focused on improvements in the therapeutic preservation of vision during and after this disease.


Asunto(s)
Modelos Animales de Enfermedad , Endoftalmitis/microbiología , Infecciones Bacterianas del Ojo/microbiología , Animales , Antibacterianos/uso terapéutico , Endoftalmitis/tratamiento farmacológico , Infecciones Bacterianas del Ojo/tratamiento farmacológico , Glucocorticoides/uso terapéutico , Humanos , Vitrectomía
17.
Invest Ophthalmol Vis Sci ; 56(12): 7303-11, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26559476

RESUMEN

PURPOSE: To test the hypothesis that blood-retinal barrier compromise is associated with the development of endogenous Staphylococcus aureus endophthalmitis. METHODS: To compromise the blood-retinal barrier in vivo, streptozotocin-induced diabetes was induced in C57BL/6J mice for 1, 3, or 5 months. Diabetic and age-matched nondiabetic mice were intravenously injected with 108 colony-forming units (cfu) of S. aureus, a common cause of endogenous endophthalmitis in diabetics. After 4 days post infection, electroretinography, histology, and bacterial counts were performed. Staphylococcus aureus-induced alterations in in vitro retinal pigment epithelial (RPE) cell barrier structure and function were assessed by anti-ZO-1 immunohistochemistry, FITC-dextran conjugate diffusion, and bacterial transmigration assays. RESULTS: We observed one bilateral infection in a control, nondiabetic animal (mean = 1.54 × 103 ± 1.78 × 10² cfu/eye, 7% incidence). Among the 1-month diabetic mice, we observed culture-confirmed unilateral infections in two animals (mean = 5.54 × 10² ± 7.09 × 10² cfu/eye, 12% incidence). Among the 3-month diabetic mice, infections were observed in 11 animals, three with bilateral infections (mean = 2.67 × 10² ± 2.49 × 10² cfu/eye, 58% incidence). Among the 5-month diabetic mice, we observed infections in five animals (mean = 7.88 × 10² ± 1.08 × 10³ cfu/eye, 33% incidence). In vitro, S. aureus infection reduced ZO-1 immunostaining and disrupted the barrier function of cultured RPE cells, resulting in diffusion of fluorophore-conjugated dextrans and transmigration of live bacteria across a permeabilized RPE barrier. CONCLUSIONS: Taken together, these results indicated that S. aureus is capable of inducing blood-retinal barrier permeability and causing endogenous bacterial endophthalmitis in normal and diabetic animals.


Asunto(s)
Barrera Hematorretinal , Endoftalmitis/metabolismo , Infecciones Bacterianas del Ojo/metabolismo , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/aislamiento & purificación , Animales , Modelos Animales de Enfermedad , Endoftalmitis/microbiología , Infecciones Bacterianas del Ojo/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones Estafilocócicas/microbiología
18.
Infect Immun ; 83(10): 3926-36, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26195555

RESUMEN

Inflammation caused by infection with Gram-positive bacteria is typically initiated by interactions with Toll-like receptor 2 (TLR2). Endophthalmitis, an infection and inflammation of the posterior segment of the eye, can lead to vision loss when initiated by a virulent microbial pathogen. Endophthalmitis caused by Bacillus cereus develops as acute inflammation with infiltrating neutrophils, and vision loss is potentially catastrophic. Residual inflammation observed during B. cereus endophthalmitis in TLR2(-/-) mice led us to investigate additional innate pathways that may trigger intraocular inflammation. We first hypothesized that intraocular inflammation during B. cereus endophthalmitis would be controlled by MyD88- and TRIF-mediated signaling, since MyD88 and TRIF are the major adaptor molecules for all bacterial TLRs. In MyD88(-/-) and TRIF(-/-) mice, we observed significantly less intraocular inflammation than in eyes from infected C57BL/6J mice, suggesting an important role for these TLR adaptors in B. cereus endophthalmitis. These results led to a second hypothesis, that TLR4, the only TLR that signals through both MyD88 and TRIF signaling pathways, contributed to inflammation during B. cereus endophthalmitis. Surprisingly, B. cereus-infected TLR4(-/-) eyes also had significantly less intraocular inflammation than infected C57BL/6J eyes, indicating an important role for TLR4 in B. cereus endophthalmitis. Taken together, our results suggest that TLR4, TRIF, and MyD88 are important components of the intraocular inflammatory response observed in experimental B. cereus endophthalmitis, identifying a novel innate immune interaction for B. cereus and for this disease.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/inmunología , Bacillus cereus/fisiología , Endoftalmitis/inmunología , Infecciones por Bacterias Grampositivas/inmunología , Receptor Toll-Like 4/inmunología , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Bacillus cereus/inmunología , Endoftalmitis/genética , Endoftalmitis/microbiología , Femenino , Infecciones por Bacterias Grampositivas/genética , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 4/genética
19.
PLoS One ; 9(6): e100543, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24959742

RESUMEN

B. cereus possesses flagella which allow the organism to migrate within the eye during a blinding form of intraocular infection called endophthalmitis. Because flagella is a ligand for Toll-like receptor 5 (TLR5), we hypothesized that TLR5 contributed to endophthalmitis pathogenesis. Endophthalmitis was induced in C57BL/6J and TLR5-/- mice by injecting 100 CFU of B. cereus into the mid-vitreous. Eyes were analyzed for intraocular bacterial growth, retinal function, and inflammation by published methods. Purified B. cereus flagellin was also injected into the mid-vitreous of wild type C57BL/6J mice and inflammation was analyzed. TLR5 activation by B. cereus flagellin was also analyzed in vitro. B. cereus grew rapidly and at similar rates in infected eyes of C57BL/6J and TLR5-/- mice. A significant loss in retinal function in both groups of mice was observed at 8 and 12 hours postinfection. Retinal architecture disruption and acute inflammation (neutrophil infiltration and proinflammatory cytokine concentrations) increased and were significant at 8 and 12 hours postinfection. Acute inflammation was comparable in TLR5-/- and C57BL/6J mice. Physiological concentrations of purified B. cereus flagellin caused significant inflammation in C57BL/6J mouse eyes, but not to the extent of that observed during active infection. Purified B. cereus flagellin was a weak agonist for TLR5 in vitro. These results demonstrated that the absence of TLR5 did not have a significant effect on the evolution of B. cereus endophthalmitis. This disparity may be due to sequence differences in important TLR5 binding domains in B. cereus flagellin or the lack of flagellin monomers in the eye to activate TLR5 during infection. Taken together, these results suggest a limited role for flagellin/TLR5 interactions in B. cereus endophthalmitis. Based on this and previous data, the importance of flagella in this disease lies in its contribution to the motility of the organism within the eye during infection.


Asunto(s)
Bacillus/fisiología , Infecciones Bacterianas del Ojo/metabolismo , Infecciones Bacterianas del Ojo/microbiología , Flagelos/metabolismo , Receptor Toll-Like 5/metabolismo , Animales , Bacillus cereus/fisiología , Modelos Animales de Enfermedad , Electrorretinografía , Endoftalmitis/diagnóstico , Endoftalmitis/genética , Endoftalmitis/metabolismo , Endoftalmitis/microbiología , Infecciones Bacterianas del Ojo/diagnóstico , Infecciones Bacterianas del Ojo/genética , Flagelina/metabolismo , Mediadores de Inflamación/metabolismo , Ratones , Ratones Noqueados , Infiltración Neutrófila , Receptor Toll-Like 5/genética
20.
Curr Eye Res ; 39(8): 790-802, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24588082

RESUMEN

PURPOSE/AIM: Klebsiella pneumoniae causes a blinding infection called endogenous endophthalmitis. The role of innate immune recognition of K. pneumoniae in the eye during infection is not known. We hypothesized that intraocular recognition of K. pneumoniae was mediated by Toll-like receptor (TLR)-4 and may be dependent on MagA-regulated hypermucoviscosity. MATERIALS AND METHODS: Experimental endophthalmitis was induced in C57BL/6J or TLR4(-/-) mice by intravitreal injection of 100 CFU of wild type or ΔmagA K. pneumoniae. Infection and inflammation were quantified by determining viable K. pneumoniae per eye, retinal responses via electroretinography, myeloperoxidase activity of infiltrating neutrophils and the proinflammatory cytokine and chemokine response. RESULTS: C57BL/6J and TLR4(-/-) mice could not control intraocular wild-type K. pneumoniae growth. TLR4(-/-) mice were less able than C57BL/6J to control the intraocular growth of ΔmagA K. pneumoniae. Retinal function testing suggested that infection with ΔmagA K. pneumoniae resulted in less retinal function loss. There was a TLR4-dependent delay in initial neutrophil recruitment, regardless of the infecting organism. The proinflammatory cytokine/chemokine data supported these results. These findings were not due to an inability of TLR4(-/-) neutrophils to recognize or kill K. pneumoniae. CONCLUSIONS: These studies suggest that TLR4 is important in the early intraocular recognition and host response to K. pneumoniae. However, the role of MagA in TLR4-mediated intraocular recognition and subsequent inflammation is less clear.


Asunto(s)
Endoftalmitis/metabolismo , Infecciones Bacterianas del Ojo/metabolismo , Infecciones por Klebsiella/metabolismo , Klebsiella pneumoniae/aislamiento & purificación , Receptor Toll-Like 4/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Quimiocinas/metabolismo , Modelos Animales de Enfermedad , Electrorretinografía , Endoftalmitis/inmunología , Endoftalmitis/fisiopatología , Infecciones Bacterianas del Ojo/inmunología , Infecciones Bacterianas del Ojo/fisiopatología , Infecciones por Klebsiella/inmunología , Infecciones por Klebsiella/fisiopatología , Klebsiella pneumoniae/inmunología , Ratones , Ratones Endogámicos C57BL , Retina/fisiopatología , Receptor Toll-Like 4/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...