Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Genes (Basel) ; 15(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38397198

RESUMEN

BACKGROUND: Mutations in the KLHL40 gene are a common cause of severe or even lethal nemaline myopathy. Some cases with mild forms have been described, although the cases are still anecdotal. The aim of this paper was to systematically review the cases described in the literature and to describe a 12-year clinical and imaging follow-up in an Italian patient with KLHL40- related myopathy in order to suggest possible follow-up measurements. METHODS: Having searched through three electronic databases (PubMed, Scopus, and EBSCO), 18 articles describing 65 patients with homozygous or compound heterozygous KLHL40 mutations were selected. A patient with a KLHL40 homozygous mutation (c.1582G>A/p.E528K) was added and clinical and genetic data were collected. RESULTS: The most common mutation identified in our systematic review was the (c.1516A>C) followed by the (c.1582G>A). In our review, 60% percent of the patients died within the first 4 years of life. Clinical features were similar across the sample. Unfortunately, however, there is no record of the natural history data in the surviving patients. The 12-year follow-up of our patient revealed a slow improvement in her clinical course, identifying muscle MRI as the only possible marker of disease progression. CONCLUSIONS: Due to its clinical and genotype homogeneity, KLHL40-related myopathy may be a condition that would greatly benefit from the development of new gene therapies; muscle MRI could be a good biomarker to monitor disease progression.


Asunto(s)
Músculo Esquelético , Miopatías Nemalínicas , Humanos , Femenino , Músculo Esquelético/diagnóstico por imagen , Estudios de Seguimiento , Proteínas Musculares/genética , Miopatías Nemalínicas/genética , Biomarcadores , Progresión de la Enfermedad
2.
J Neuromuscul Dis ; 11(2): 285-297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38363615

RESUMEN

Background: Dilated cardiomyopathy (DCM) is a major complication of, and leading cause of mortality in Duchenne muscular dystrophy (DMD). Its severity, age at onset, and rate of progression display wide variability, whose molecular bases have been scarcely elucidated. Potential DCM-modifying factors include glucocorticoid (GC) and cardiological treatments, DMD mutation type and location, and variants in other genes. Methods and Results: We retrospectively collected 3138 echocardiographic measurements of left ventricular ejection fraction (EF), shortening fraction (SF), and end-diastolic volume (EDV) from 819 DMD participants, 541 from an Italian multicentric cohort and 278 from the Cooperative International Neuromuscular Group Duchenne Natural History Study (CINRG-DNHS). Using generalized estimating equation (GEE) models, we estimated the yearly rate of decrease of EF (-0.80%) and SF (-0.41%), while EDV increase was not significantly associated with age. Utilizing a multivariate generalized estimating equation (GEE) model we observed that mutations preserving the expression of the C-terminal Dp71 isoform of dystrophin were correlated with decreased EDV (-11.01 mL/m2, p = 0.03) while for dp116 were correlated with decreased EF (-4.14%, p = <0.001). The rs10880 genotype in the LTBP4 gene, previously shown to prolong ambulation, was also associated with increased EF and decreased EDV (+3.29%, p = 0.002, and -10.62 mL/m2, p = 0.008) with a recessive model. Conclusions: We quantitatively describe the progression of systolic dysfunction progression in DMD, confirm the effect of distal dystrophin isoform expression on the dystrophin-deficient heart, and identify a strong effect of LTBP4 genotype of DCM in DMD.


Asunto(s)
Cardiomiopatías , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofina/metabolismo , Haplotipos , Estudios Retrospectivos , Volumen Sistólico , Función Ventricular Izquierda , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/complicaciones , Cardiomiopatías/etiología , Cardiomiopatías/genética , Isoformas de Proteínas/genética , Proteínas de Unión a TGF-beta Latente/genética
3.
J Neuromuscul Dis ; 11(2): 375-387, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38189759

RESUMEN

Background: Becker muscular dystrophy (BMD) is a dystrophinopathy due to in-frame mutations in the dystrophin gene (DMD) which determines a reduction of dystrophin at muscle level. BMD has a wide spectrum of clinical variability with different degrees of disability. Studies of natural history are needed also in view of up-coming clinical trials. Objectives: From an initial cohort of 32 BMD adult subjects, we present a detailed phenotypic characterization of 28 patients, then providing a description of their clinical natural history over the course of 12 months for 18 and 24 months for 13 of them. Methods: Each patient has been genetically characterized. Baseline, and 1-year and 2 years assessments included North Star Ambulatory Assessment (NSAA), timed function tests (time to climb and descend four stairs), 6-minute walk test (6MWT), Walton and Gardner-Medwin Scale and Medical Research Council (MRC) scale. Muscle magnetic resonance imaging (MRI) was acquired at baseline and in a subgroup of 9 patients after 24 months. Data on cardiac function (electrocardiogram, echocardiogram, and cardiac MRI) were also collected. Results and conclusions: Among the clinical heterogeneity, a more severe involvement is often observed in patients with 45-X del, with a disease progression over two years. The 6MWT appears sensitive to detect modification from baseline during follow up while no variation was observed by MRC testing. Muscle MRI of the lower limbs correlates with clinical parameters.Our study further highlights how the phenotypic variability of BMD adult patients makes it difficult to describe an uniform course and substantiates the need to identify predictive parameters and biomarkers to stratify patients.


Asunto(s)
Distrofia Muscular de Duchenne , Adulto , Humanos , Distrofina/genética , Estudios de Seguimiento , Músculo Esquelético/patología , Variación Biológica Poblacional
4.
Front Neurol ; 14: 1224241, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965175

RESUMEN

Hereditary myopathies represent a clinically and genetically heterogeneous group of neuromuscular disorders, characterized by highly variable clinical presentations and frequently overlapping phenotypes with other neuromuscular disorders, likely influenced by genetic and environmental modifiers. Genetic testing is often challenging due to ambiguous clinical diagnosis. Here, we present the case of a family with clinical and Electromyography (EMG) features resembling a myotonia-like disorder in which Whole Exome Sequencing (WES) analysis revealed the co-segregation of two rare missense variants in UBR4 and HSPG2, genes previously associated with episodic ataxia 8 (EA8). A review of the literature highlighted a striking overlap between the clinical and the molecular features of our family and the previously described episodic ataxias (EAs), which raises concerns about the genotype-phenotype correlation, clinical variability, and the confounding overlap in these groups of disorders. This emphasizes the importance of thoroughly framing the patient's phenotype. The more clear-cut the diagnosis, the easier the identification of a genetic determinant, and the better the prognosis and the treatment of patients.

5.
J Med Genet ; 60(12): 1224-1234, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37586838

RESUMEN

BACKGROUND: KBG syndrome is caused by haploinsufficiency of ANKRD11 and is characterised by macrodontia of upper central incisors, distinctive facial features, short stature, skeletal anomalies, developmental delay, brain malformations and seizures. The central nervous system (CNS) and skeletal features remain poorly defined. METHODS: CNS and/or skeletal imaging were collected from molecularly confirmed individuals with KBG syndrome through an international network. We evaluated the original imaging and compared our results with data in the literature. RESULTS: We identified 53 individuals, 44 with CNS and 40 with skeletal imaging. Common CNS findings included incomplete hippocampal inversion and posterior fossa malformations; these were significantly more common than previously reported (63.4% and 65.9% vs 1.1% and 24.7%, respectively). Additional features included patulous internal auditory canal, never described before in KBG syndrome, and the recurrence of ventriculomegaly, encephalic cysts, empty sella and low-lying conus medullaris. We found no correlation between these structural anomalies and epilepsy or intellectual disability. Prevalent skeletal findings comprised abnormalities of the spine including scoliosis, coccygeal anomalies and cervical ribs. Hand X-rays revealed frequent abnormalities of carpal bone morphology and maturation, including a greater delay in ossification compared with metacarpal/phalanx bones. CONCLUSION: This cohort enabled us to describe the prevalence of very heterogeneous neuroradiological and skeletal anomalies in KBG syndrome. Knowledge of the spectrum of such anomalies will aid diagnostic accuracy, improve patient care and provide a reference for future research on the effects of ANKRD11 variants in skeletal and brain development.


Asunto(s)
Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Discapacidad Intelectual , Anomalías Dentarias , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Enfermedades del Desarrollo Óseo/diagnóstico por imagen , Enfermedades del Desarrollo Óseo/genética , Anomalías Dentarias/diagnóstico por imagen , Anomalías Dentarias/genética , Facies , Fenotipo , Proteínas Represoras/genética , Factores de Transcripción , Neuroimagen
6.
Genes (Basel) ; 14(7)2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37510268

RESUMEN

BACKGROUND: Congenital myopathies are a group of clinically, genetically, and histologically heterogeneous diseases caused by mutations in a large group of genes. One of these is CACNA1S, which is recognized as the cause of Dihydropyridine Receptor Congenital Myopathy. METHODS: To better characterize the phenotypic spectrum of CACNA1S myopathy, we conducted a systematic review of cases in the literature through three electronic databases following the PRISMA guidelines. We selected nine articles describing 23 patients with heterozygous, homozygous, or compound heterozygous mutations in CACNA1S and we added one patient with a compound heterozygous mutation in CACNA1S (c.1394-2A>G; c.1724T>C, p.L575P) followed at our Institute. We collected clinical and genetic data, muscle biopsies, and muscle MRIs when available. RESULTS: The phenotype of this myopathy is heterogeneous, ranging from more severe forms with a lethal early onset and mild-moderate forms with a better clinical course. CONCLUSIONS: Our patient presented a phenotype compatible with the mild-moderate form, although she presented peculiar features such as a short stature, myopia, mild sensorineural hearing loss, psychiatric symptoms, and posterior-anterior impairment gradient on thigh muscle MRI.


Asunto(s)
Enfermedades Musculares , Miotonía Congénita , Femenino , Humanos , Canales de Calcio Tipo L/genética , Enfermedades Musculares/genética , Mutación , Músculo Esquelético/patología , Fenotipo , Miotonía Congénita/genética
8.
Genes (Basel) ; 14(2)2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36833224

RESUMEN

Thanks to advances in gene sequencing, RYR1-related myopathy (RYR1-RM) is now known to manifest itself in vastly heterogeneous forms, whose clinical interpretation is, therefore, highly challenging. We set out to develop a novel unsupervised cluster analysis method in a large patient population. The objective was to analyze the main RYR1-related characteristics to identify distinctive features of RYR1-RM and, thus, offer more precise genotype-phenotype correlations in a group of potentially life-threatening disorders. We studied 600 patients presenting with a suspicion of inherited myopathy, who were investigated using next-generation sequencing. Among them, 73 index cases harbored variants in RYR1. In an attempt to group genetic variants and fully exploit information derived from genetic, morphological, and clinical datasets, we performed unsupervised cluster analysis in 64 probands carrying monoallelic variants. Most of the 73 patients with positive molecular diagnoses were clinically asymptomatic or pauci-symptomatic. Multimodal integration of clinical and histological data, performed using a non-metric multi-dimensional scaling analysis with k-means clustering, grouped the 64 patients into 4 clusters with distinctive patterns of clinical and morphological findings. In addressing the need for more specific genotype-phenotype correlations, we found clustering to overcome the limits of the "single-dimension" paradigm traditionally used to describe genotype-phenotype relationships.


Asunto(s)
Enfermedades Musculares , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Canal Liberador de Calcio Receptor de Rianodina/genética , Enfermedades Musculares/genética , Estudios de Asociación Genética , Genotipo , Fenotipo
9.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498898

RESUMEN

OBJECTIVE: To define the prevalence of variants in collagen VI genes through a next-generation sequencing (NGS) approach in undiagnosed patients with suspected neuromuscular disease and to propose a diagnostic flowchart to assess the real pathogenicity of those variants. METHODS: In the past five years, we have collected clinical and molecular information on 512 patients with neuromuscular symptoms referred to our center. To pinpoint variants in COLVI genes and corroborate their real pathogenicity, we sketched a multistep flowchart, taking into consideration the bioinformatic weight of the gene variants, their correlation with clinical manifestations and possible effects on protein stability and expression. RESULTS: In Step I, we identified variants in COLVI-related genes in 48 patients, of which three were homozygous variants (Group 1). Then, we sorted variants according to their CADD score, clinical data and complementary studies (such as muscle and skin biopsy, study of expression of COLVI on fibroblast or muscle and muscle magnetic resonance). We finally assessed how potentially pathogenic variants (two biallelic and 12 monoallelic) destabilize COL6A1-A2-A3 subunits. Overall, 15 out of 512 patients were prioritized according to this pipeline. In seven of them, we confirmed reduced or absent immunocytochemical expression of collagen VI in cultured skin fibroblasts or in muscle tissue. CONCLUSIONS: In a real-world diagnostic scenario applied to heterogeneous neuromuscular conditions, a multistep integration of clinical and molecular data allowed the identification of about 3% of those patients harboring pathogenetic collagen VI variants.


Asunto(s)
Colágeno Tipo VI , Enfermedades Neuromusculares , Humanos , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Enfermedades Neuromusculares/epidemiología , Enfermedades Neuromusculares/genética , Homocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Músculos/metabolismo , Mutación
10.
Neurol Genet ; 8(3): e676, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35655584

RESUMEN

Background and Objectives: Clinical manifestations in STXBP1 developmental and epileptic encephalopathy (DEE) vary in severity and outcome, and the genotypic spectrum is diverse. We aim to trace the neurodevelopmental trajectories in individuals with STXBP1-DEE and dissect the relationship between neurodevelopment and epilepsy. Methods: Retrospective standardized clinical data were collected through international collaboration. A composite neurodevelopmental score system compared the developmental trajectories in STXBP1-DEE. Results: Forty-eight patients with de novo STXBP1 variants and a history of epilepsy were included (age range at the time of the study: 10 months to 35 years, mean 8.5 years). At the time of inclusion, 65% of individuals (31/48) had active epilepsy, whereas 35% (17/48) were seizure free, and 76% of those (13/17) achieved remission within the first year of life. Twenty-two individuals (46%) showed signs of developmental impairment and/or neurologic abnormalities before epilepsy onset. Age at seizure onset correlated with severity of developmental outcome and the developmental milestones achieved, with a later seizure onset associated with better developmental outcome. In contrast, age at seizure remission and epilepsy duration did not affect neurodevelopmental outcomes. Overall, we did not observe a clear genotype-phenotype correlation, but monozygotic twins with de novo STXBP1 variant showed similar phenotype and parallel disease course. Discussion: The disease course in STXBP1-DEE presents with 2 main trajectories, with either early seizure remission or drug-resistant epilepsy, and a range of neurodevelopmental outcomes from mild to profound intellectual disability. Age at seizure onset is the only epilepsy-related feature associated with neurodevelopment outcome. These findings can inform future dedicated natural history studies and trial design.

11.
J Neurol ; 269(9): 4884-4894, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35513612

RESUMEN

Genetic modifiers of Duchenne muscular dystrophy (DMD) are variants located in genes different from the disease-causing gene DMD, but associated with differences in disease onset, progression, or response to treatment. Modifiers described so far have been tested mainly for associations with ambulatory function, while their effect on upper limb function, which is especially relevant for quality of life and independence in non-ambulatory patients, is unknown. We tested genotypes at several known modifier loci (SPP1, LTBP4, CD40, ACTN3) for association with Performance Upper Limb version 1.2 score in an Italian multicenter cohort, and with Brooke scale score in the Cooperative International Neuromuscular Group Duchenne Natural History Study (CINRG-DNHS), using generalized estimating equation (GEE) models of longitudinally collected data, with age and glucocorticoid treatment as covariates. CD40 rs1883832, previously linked to earlier loss of ambulation, emerged as a modifier of upper limb function, negatively affecting shoulder and distal domains of PUL (p = 0.023 and 0.018, respectively) in the Italian cohort, as well as of Brooke score (p = 0.018) in the CINRG-DNHS. These findings will be useful for the design and interpretation of clinical trials in DMD, especially for non-ambulatory populations.


Asunto(s)
Distrofia Muscular de Duchenne , Actinina/genética , Estudios de Cohortes , Genotipo , Humanos , Distrofia Muscular de Duchenne/genética , Calidad de Vida , Extremidad Superior
12.
Acta Neuropathol Commun ; 10(1): 54, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428369

RESUMEN

Mutations in the RYR1 gene, encoding ryanodine receptor 1 (RyR1), are a well-known cause of Central Core Disease (CCD) and Multi-minicore Disease (MmD). We screened a cohort of 153 patients carrying an histopathological diagnosis of core myopathy (cores and minicores) for RYR1 mutation. At least one RYR1 mutation was identified in 69 of them and these patients were further studied. Clinical and histopathological features were collected. Clinical phenotype was highly heterogeneous ranging from asymptomatic or paucisymptomatic hyperCKemia to severe muscle weakness and skeletal deformity with loss of ambulation. Sixty-eight RYR1 mutations, generally missense, were identified, of which 16 were novel. The combined analysis of the clinical presentation, disease progression and the structural bioinformatic analyses of RYR1 allowed to associate some phenotypes to mutations in specific domains. In addition, this study highlighted the structural bioinformatics potential in the prediction of the pathogenicity of RYR1 mutations. Further improvement in the comprehension of genotype-phenotype relationship of core myopathies can be expected in the next future: the actual lack of the human RyR1 crystal structure paired with the presence of large intrinsically disordered regions in RyR1, and the frequent presence of more than one RYR1 mutation in core myopathy patients, require designing novel investigation strategies to completely address RyR1 mutation effect.


Asunto(s)
Miopatías Estructurales Congénitas , Miopatía del Núcleo Central , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Músculo Esquelético/patología , Mutación/genética , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Miopatía del Núcleo Central/genética , Miopatía del Núcleo Central/patología , Canal Liberador de Calcio Receptor de Rianodina/genética
13.
Epilepsy Behav ; 129: 108604, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35217385

RESUMEN

N-methyl-D-aspartate receptors (NMDAR) are di- or tri-heterotetrameric ligand-gated ion channels composed of two obligate glycine-binding GluN1 subunits and two glutamate-binding GluN2 or GluN3 subunits, encoded by GRIN1, GRIN2A-D, and GRIN3A-B receptor genes respectively. Each NMDA receptor subtype has different temporal and spatial expression patterns in the brain and varies in the cell types and subcellular localization resulting in different functions. They play a crucial role in mediating the excitatory neurotransmission, but are also involved in neuronal development and synaptic plasticity, essential for learning, memory, and high cognitive functions. Among genes coding NMDAR subunits, GRIN2B is predominantly associated with neurodevelopmental disorders such as intellectual disability, developmental delay, autism, attention-deficit/hyperactivity disorder and, further, schizophrenia, Alzheimer's disease. The GRIN2A seems to be predominantly associated with a more definite phenotype including an epileptic spectrum ranging from Landau-Kleffner syndrome to benign childhood epilepsy with centrotemporal spikes, speech or language impairment, intellectual disability/developmental delay often in comorbidity. On the contrary, the occurrence of autism spectrum disorders, unlike GRIN2B-associated disorders, is questionable. To contribute to elucidate the latter issue and to better define the genotype/phenotype correlation, we report the clinical and neuropsychological profile of two patients featuring autism disorder, intellectual disability, language impairment, and focal epilepsy, associated with previously unreported heterozygous de novo GRIN2A pathogenic variants. We hypothesize that the unusual phenotype may be the result of interactions of tri-heterotetrameric 2GluN1/GluN2A-D/GluN3A-B subunits with mutated GluN2A subunit and/or the dysfunction may be influenced by other unknown modifier genes and/or environmental factors.


Asunto(s)
Trastorno Autístico , Epilepsias Parciales , Epilepsia , Síndrome de Landau-Kleffner , Trastornos del Neurodesarrollo , Niño , Epilepsias Parciales/genética , Epilepsia/complicaciones , Epilepsia/genética , Humanos , Trastornos del Neurodesarrollo/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
14.
Neuromuscul Disord ; 32(2): 142-149, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35033413

RESUMEN

Muscle MRI has an increasing role in diagnosis of inherited neuromuscular diseases, but no features are known which reliably differentiate myopathic and neurogenic conditions. Using patients presenting with early onset distal weakness, we aimed to identify an MRI signature to distinguish myopathic and neurogenic conditions. We identified lower limb MRI scans from patients with either genetically (n = 24) or clinically (n = 13) confirmed diagnoses of childhood onset distal myopathy or distal spinal muscular atrophy. An initial exploratory phase reviewed 11 scans from genetically confirmed patients identifying a single potential discriminatory marker concerning the pattern of fat replacement within muscle, coined "islands". This pattern comprised small areas of muscle tissue with normal signal intensity completely surrounded by areas with similar intensity to subcutaneous fat. In the subsequent validation phase, islands correctly classified scans from all 12 remaining genetically confirmed patients, and 12/13 clinically classified patients. In the genetically confirmed patients MRI classification of neurogenic/myopathic aetiology had 100% accuracy (24/24) compared with 65% accuracy (15/23) for EMG, and 79% accuracy (15/19) for muscle biopsy. Future studies are needed in other clinical contexts, however the presence of islands appears to highly suggestive of a neurogenic aetiology in patients presenting with early onset distal motor weakness.


Asunto(s)
Enfermedades Neuromusculares , Biopsia , Humanos , Imagen por Resonancia Magnética , Debilidad Muscular/patología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Enfermedades Neuromusculares/diagnóstico por imagen , Enfermedades Neuromusculares/patología
16.
J Neurol ; 269(1): 437-450, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34487232

RESUMEN

BACKGROUND: Monoallelic variants in the KIF1A gene are associated with a large set of clinical phenotypes including neurodevelopmental and neurodegenerative disorders, underpinned by a broad spectrum of central and peripheral nervous system involvement. METHODS: In a multicenter study conducted in patients presenting spastic gait or complex neurodevelopmental disorders, we analyzed the clinical, genetic and neuroradiological features of 28 index cases harboring heterozygous variants in KIF1A. We conducted a literature systematic review with the aim to comparing our findings with previously reported KIF1A-related phenotypes. RESULTS: Among 28 patients, we identified nine novel monoallelic variants, and one a copy number variation encompassing KIF1A. Mutations arose de novo in most patients and were prevalently located in the motor domain. Most patients presented features of a continuum ataxia-spasticity spectrum with only five cases showing a prevalently pure spastic phenotype and six presenting congenital ataxias. Seventeen mutations occurred in the motor domain of the Kinesin-1A protein, but location of mutation did not correlate with neurological and imaging presentations. When tested in 15 patients, muscle biopsy showed oxidative metabolism alterations (6 cases), impaired respiratory chain complexes II + III activity (3/6) and low CoQ10 levels (6/9). Ubiquinol supplementation (1gr/die) was used in 6 patients with subjective benefit. CONCLUSIONS: This study broadened our clinical, genetic, and neuroimaging knowledge of KIF1A-related disorders. Although highly heterogeneous, it seems that manifestations of ataxia-spasticity spectrum disorders seem to occur in most patients. Some patients also present secondary impairment of oxidative metabolism; in this subset, ubiquinol supplementation therapy might be appropriate.


Asunto(s)
Variaciones en el Número de Copia de ADN , Cinesinas , Paraplejía Espástica Hereditaria , Estudios Transversales , Heterocigoto , Humanos , Cinesinas/genética , Mutación , Fenotipo , Paraplejía Espástica Hereditaria/genética
17.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34445196

RESUMEN

The term hereditary ataxia (HA) refers to a heterogeneous group of neurological disorders with multiple genetic etiologies and a wide spectrum of ataxia-dominated phenotypes. Massive gene analysis in next-generation sequencing has entered the HA scenario, broadening our genetic and clinical knowledge of these conditions. In this study, we employed a targeted resequencing panel (TRP) in a large and highly heterogeneous cohort of 377 patients with a clinical diagnosis of HA, but no molecular diagnosis on routine genetic tests. We obtained a positive result (genetic diagnosis) in 33.2% of the patients, a rate significantly higher than those reported in similar studies employing TRP (average 19.4%), and in line with those performed using exome sequencing (ES, average 34.6%). Moreover, 15.6% of the patients had an uncertain molecular diagnosis. STUB1, PRKCG, and SPG7 were the most common causative genes. A comparison with published literature data showed that our panel would have identified 97% of the positive cases reported in previous TRP-based studies and 92% of those diagnosed by ES. Proper use of multigene panels, when combined with detailed phenotypic data, seems to be even more efficient than ES in clinical practice.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Degeneraciones Espinocerebelosas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Pruebas Genéticas , Humanos , Masculino , Persona de Mediana Edad , Mutación , Secuenciación del Exoma , Adulto Joven
18.
Brain Dev ; 43(9): 939-944, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34134906

RESUMEN

BACKGROUND: Severe loss of TBCE function has been related to two well-known dysmorphic syndromes, while TBCE hypomorphic variants have been linked to neurodegenerative conditions due to perturbed microtubule dynamics and homeostasis, with signs of central and peripheral nervous system involvement. METHOD: We report on an Italian female originating from Southern Italy who presented early-onset regression and neurodegeneration, with neurological features of tetraparesis and signs of peripheral nervous system involvement. Her brain MRI revealed white matter involvement. RESULTS: Analyzing all known hypomyelination leukodystrophies related genes, two mutations in TBCE (NM_001079515) were detected: the missense variant c.464 T > A; p. (Ile155Asn) and the frameshift variant c.924del; p. (Leu309Ter), in compound heterozygosity, already reported in the literature in patients coming from the same geographical area. The clinical phenotype of the proposita was more severe and with an earlier onset than the majority of the patients reported so far. CONCLUSIONS: Next Generation Sequencing is becoming increasingly necessary to assess unusual phenotypes, with the opportunity to establish prognosis and disease mechanisms, and facilitating differential diagnosis.


Asunto(s)
Chaperonas Moleculares/genética , Degeneración Nerviosa/diagnóstico , Degeneración Nerviosa/genética , Niño , Femenino , Humanos , Italia , Microcefalia/diagnóstico , Microcefalia/genética , Hipotonía Muscular/diagnóstico , Mutación Missense , Neuronas/patología , Fenotipo , Sustancia Blanca/patología
19.
J Neurol Sci ; 425: 117441, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33866115

RESUMEN

Hereditary spastic paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by progressive spasticity and weakness of the lower limbs with a notable phenotypic variation and an autosomal recessive (AR), autosomal dominant (AD), and X-linked inheritance pattern. The recent clinical use of next generation sequencing methods has facilitated the diagnostic approach to HSPs, but the diagnosis remains quite challenging considering its wide clinical and genetic heterogeneity. In this scenario, magnetic resonance imaging (MRI) emerges as a valuable tool in helping to exclude mimicking disorders and to guide genetic testing. The aim of this study is to investigate the presence of possible patterns of morphostructural MRI findings that may provide relevant clues for a specific genetic HSP subtype. In our cohort, for example, white matter abnormalities were the most common finding followed by the thinning of the corpus callosum, which, interestingly, presented different thinning characteristics depending on the HSP subtype.


Asunto(s)
Paraplejía Espástica Hereditaria , Niño , Cuerpo Calloso , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , Neuroimagen , Paraplejía Espástica Hereditaria/diagnóstico por imagen , Paraplejía Espástica Hereditaria/genética
20.
Acta Myol ; 40(4): 143-151, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35047754

RESUMEN

Inherited muscular dystrophies and congenital myopathies present in early childhood with progressive muscle weakness, determining severe motor limitations. Active surveillance and management of associated complications have improved ambulation, function, quality of life and life expectancy. The need for repeatable, objective and quantitative measures to monitor the clinical course of the disease is a current issue, particularly in the new era where new flows of therapies are proposed to the patients. In this scenario, we designed and tested a wearable device termed AUTOMA that is able to provide quantification of the muscular impairment in the upper limb upon isokinetic tests through the integration of a force sensor and an electric goniometer. This allows qualitatively estimating the muscular functions with a systematic procedure. We carried out a preliminary pilot study on 9 patients that revealed the suitability of AUTOMA as an objective measurement tool for diagnosing and monitoring neuromuscular disorders, and opens to a more extensive clinical study in which to test and validate our platform intensively.


Asunto(s)
Enfermedades Neuromusculares , Dispositivos Electrónicos Vestibles , Preescolar , Humanos , Enfermedades Neuromusculares/diagnóstico , Proyectos Piloto , Calidad de Vida , Extremidad Superior
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA