Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(19): eadf8549, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37163604

RESUMEN

Lymphangioleiomyomatosis (LAM) is a rare, progressive lung disease that predominantly affects women. LAM cells carry TSC1/TSC2 mutations, causing mTORC1 hyperactivation and uncontrolled cell growth. mTORC1 inhibitors stabilize lung function; however, sustained efficacy requires long-term administration, and some patients fail to tolerate or respond to therapy. Although the genetic basis of LAM is known, mechanisms underlying LAM pathogenesis remain elusive. We integrated single-cell RNA sequencing and single-nuclei ATAC-seq of LAM lungs to construct a gene regulatory network controlling the transcriptional program of LAM cells. We identified activation of uterine-specific HOX-PBX transcriptional programs in pulmonary LAMCORE cells as regulators of cell survival depending upon HOXD11-PBX1 dimerization. Accordingly, blockage of HOXD11-PBX1 dimerization by HXR9 suppressed LAM cell survival in vitro and in vivo. PBX1 regulated STAT1/3, increased the expression of antiapoptotic genes, and promoted LAM cell survival in vitro. The HOX-PBX gene network provides promising targets for treatment of LAM/TSC mTORC1-hyperactive cancers.


Asunto(s)
Redes Reguladoras de Genes , Proteínas de Homeodominio , Linfangioleiomiomatosis , Humanos , Análisis de la Célula Individual , Linfangioleiomiomatosis/metabolismo , Linfangioleiomiomatosis/patología , Factores de Transcripción/metabolismo , Pulmón/metabolismo , Pulmón/patología , Animales , Ratas , Metástasis de la Neoplasia , Multiómica , Femenino
2.
JCI Insight ; 8(9)2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36927688

RESUMEN

Tuberous sclerosis complex (TSC) is characterized by multisystem, low-grade neoplasia involving the lung, kidneys, brain, and heart. Lymphangioleiomyomatosis (LAM) is a progressive pulmonary disease affecting almost exclusively women. TSC and LAM are both caused by mutations in TSC1 and TSC2 that result in mTORC1 hyperactivation. Here, we report that single-cell RNA sequencing of LAM lungs identified activation of genes in the sphingolipid biosynthesis pathway. Accordingly, the expression of acid ceramidase (ASAH1) and dihydroceramide desaturase (DEGS1), key enzymes controlling sphingolipid and ceramide metabolism, was significantly increased in TSC2-null cells. TSC2 negatively regulated the biosynthesis of tumorigenic sphingolipids, and suppression of ASAH1 by shRNA or the inhibitor ARN14976 (17a) resulted in markedly decreased TSC2-null cell viability. In vivo, 17a significantly decreased the growth of TSC2-null cell-derived mouse xenografts and short-term lung colonization by TSC2-null cells. Combined rapamycin and 17a treatment synergistically inhibited renal cystadenoma growth in Tsc2+/- mice, consistent with increased ASAH1 expression and activity being rapamycin insensitive. Collectively, the present study identifies rapamycin-insensitive ASAH1 upregulation in TSC2-null cells and tumors and provides evidence that targeting aberrant sphingolipid biosynthesis pathways has potential therapeutic value in mechanistic target of rapamycin complex 1-hyperactive neoplasms, including TSC and LAM.


Asunto(s)
Neoplasias Pulmonares , Esclerosis Tuberosa , Humanos , Ratones , Femenino , Animales , Esclerosis Tuberosa/tratamiento farmacológico , Proteínas Supresoras de Tumor/genética , Regulación hacia Arriba , Ceramidasa Ácida/genética , Ceramidasa Ácida/metabolismo , Ceramidasa Ácida/uso terapéutico , Neoplasias Pulmonares/patología , Sirolimus/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Noqueados
3.
J Pharmacol Exp Ther ; 385(1): 35-49, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36746610

RESUMEN

Existing vascular endothelial growth factor-oriented antiangiogenic approaches are known for their high potency. However, significant side effects associated with their use drive the need for novel antiangiogenic strategies. The small GTPase RhoA is an established regulator of actin cytoskeletal dynamics. Previous studies have highlighted the impact of endothelial RhoA pathway on angiogenesis. Rho-associate kinase (ROCK), a direct RhoA effector, is potently inhibited by Fasudil, a clinically relevant ROCK inhibitor. Here, we aimed to target the RhoA signaling in endothelial cells by generating Fasudil-encapsulated CD31-targeting liposomes as a potential antiangiogenic therapy. The liposomes presented desirable characteristics, preferential binding to CD31-expressing HEK293T cells and to endothelial cells, inhibited stress fiber formation and cytoskeletal-related morphometric parameters, and inhibited in vitro angiogenic functions. Overall, this work shows that the nanodelivery-mediated endothelial targeting of RhoA signaling can offer a promising strategy for angiogenesis inhibition in vascular-related diseases. SIGNIFICANCE STATEMENT: Systemic administration of antiangiogenic therapeutics induces side effects to non-targeted tissues. This study, among others, has shown the impact of the RhoA signaling in the endothelial cells and their angiogenic functions. Here, to minimize potential toxicity, this study generated CD31-targeting liposomes with encapsulated Fasudil, a clinically relevant Rho kinase inhibitor, and successfully targeted endothelial cells. In this proof-of-principle study, the efficient Fasudil delivery, its impact on the endothelial signaling, morphometric alterations, and angiogenic functions verify the benefits of site-targeted antiangiogenic therapy.


Asunto(s)
Células Endoteliales , Factor A de Crecimiento Endotelial Vascular , Humanos , Células Endoteliales/metabolismo , Células HEK293 , Liposomas , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
Genes Dis ; 9(1): 187-200, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35005118

RESUMEN

TSC renal cystic disease is poorly understood and has no approved treatment. In a new principal cell-targeted murine model of Tsc cystic disease, the renal cystic epithelium is mostly composed of type A intercalated cells with an intact Tsc2 gene confirmed by sequencing, although these cells exhibit a Tsc-mutant disease phenotype. We used a newly derived targeted murine model in lineage tracing and extracellular vesicle (EV) characterization experiments and a cell culture model in EV characterization and cellular induction experiments to understand TSC cystogenesis. Using lineage tracing experiments, we found principal cells undergo clonal expansion but contribute very few cells to the cyst. We determined that cystic kidneys contain more interstitial EVs than noncystic kidneys, excrete fewer EVs in urine, and contain EVs in cyst fluid. Moreover, the loss of Tsc2 gene in EV-producing cells greatly changes the effect of EVs on renal tubular epithelium, such that the epithelium develops increased secretory and proliferative pathway activity. We demonstate that the mTORC1 pathway activity is independent form the EV production, and that the EV effects for a single cell line can vary significantly. TSC cystogenesis involves significant contribution from genetically intact cells conscripted to the mutant phenotype by mutant cell derived EVs.

5.
Front Physiol ; 12: 630933, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262466

RESUMEN

In tuberous sclerosis complex (TSC), Tsc2 mutations are associated with more severe disease manifestations than Tsc1 mutations and the role of extracellular vesicles (EVs) in this context is not yet studied. We report a comparative analysis of EVs derived from isogenic renal cells except for Tsc1 or Tsc2 gene status and hypothesized that in spite of having similar physical characteristics, EVs modulate signaling pathways differently, thus leading to TSC heterogenicity. We used mouse inner medullary collecting duct (mIMCD3) cells with the Tsc1 (T1G cells) or Tsc2 (T2J cells) gene disrupted by CRISPR/CAS9. EVs were isolated from the cell culture media by size-exclusion column chromatography followed by detailed physical and chemical characterization. Physical characterization of EVs was accessed by tunable resistive pulse sensing and dynamic light scattering, revealing similar average sizes and zeta potentials (at pH 7.4) for EVs from mIMCD3 (123.5 ± 5.7 nm and -16.3 ± 2.1 mV), T1G cells (131.5 ± 8.3 nm and -19.8 ± 2.7 mV), and T2J cells (127.3 ± 4.9 nm and -20.2 ± 2.1 mV). EVs derived from parental mIMCD3 cells and both mutated cell lines were heterogeneous (>90% of EVs < 150 nm) in nature. Immunoblotting detected cilial Hedgehog signaling protein Arl13b; intercellular proteins TSG101 and Alix; and transmembrane proteins CD63, CD9, and CD81. Compared to Tsc2 deletion, Tsc1 deletion cells had reduced EV production and release rates. EVs from Tsc1 mutant cells altered mTORC1, autophagy, and ß-catenin pathways differently than EVs from Tsc2-mutated cells. Quantitative PCR analysis revealed the down regulation of miR-212a-3p and miR-99a-5p in EVs from Tsc2-mutated cells compared to EVs from Tsc1-mutant cells. Thus, EV-derived miR-212-3p and mIR-99a-5p axes may represent therapeutic targets or biomarkers for TSC disease.

6.
Int J Mol Sci ; 21(5)2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32138326

RESUMEN

The tuberous sclerosis complex (Tsc) proteins regulate the conserved mTORC1 growth regulation pathway. We identified that loss of the Tsc2 gene in mouse inner medullary collecting duct (mIMCD) cells induced a greater than two-fold increase in extracellular vesicle (EV) production compared to the same cells having an intact Tsc axis. We optimized EV isolation using a well-established size exclusion chromatography method to produce high purity EVs. Electron microscopy confirmed the purity and spherical shape of EVs. Both tunable resistive pulse sensing (TRPS) and dynamic light scattering (DLS) demonstrated that the isolated EVs possessed a heterogenous size distribution. Approximately 90% of the EVs were in the 100-250 nm size range, while approximately 10% had a size greater than 250 nm. Western blot analysis using proteins isolated from the EVs revealed the cellular proteins Alix and TSG101, the transmembrane proteins CD63, CD81, and CD9, and the primary cilia Hedgehog signaling-related protein Arl13b. Proteomic analysis of EVs identified a significant difference between the Tsc2-intact and Tsc2-deleted cell that correlated well with the increased production. The EVs may be involved in tissue homeostasis and cause disease by overproduction and altered protein content. The EVs released by renal cyst epithelia in TSC complex may serve as a tool to discover the mechanism of TSC cystogenesis and in developing potential therapeutic strategies.


Asunto(s)
Vesículas Extracelulares/metabolismo , Riñón/metabolismo , Esclerosis Tuberosa/metabolismo , Animales , Western Blotting , Línea Celular , Cromatografía en Gel , Vesículas Extracelulares/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Unión Proteica , Proteómica , Tetraspanina 28/metabolismo , Tetraspanina 29/metabolismo , Tetraspanina 30/metabolismo , Esclerosis Tuberosa/genética
7.
Mol Cancer Res ; 17(8): 1639-1651, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31088907

RESUMEN

We discovered that 90.3% of patients with angiomyolipomas, lymphangioleiomyomatosis (LAM), and tuberous sclerosis complex (TSC) carry the arginine variant of codon 72 (R72) of TP53 and that R72 increases the risk for angiomyolipoma. R72 transactivates NOTCH1 and NODAL better than the proline variant of codon 72 (P72); therefore, the expression of NOTCH1 and NODAL is increased in angiomyolipoma cells that carry R72. The loss of Tp53 and Tsc1 within nestin-expressing cells in mice resulted in the development of renal cell carcinomas (RCC) with high Notch1 and Nodal expression, suggesting that similar downstream mechanisms contribute to tumorigenesis as a result of p53 loss in mice and p53 polymorphism in humans. The loss of murine Tp53 or expression of human R72 contributes to tumorigenesis via enhancing epithelial-to-mesenchymal transition and motility of tumor cells through the Notch and Nodal pathways. IMPLICATIONS: This work revealed unexpected contributions of the p53 polymorphism to the pathogenesis of TSC and established signaling alterations caused by this polymorphism as a target for therapy. We found that the codon 72 TP53 polymorphism contributes to TSC-associated tumorigenesis via Notch and Nodal signaling.


Asunto(s)
Carcinogénesis/patología , Proteína Nodal/metabolismo , Polimorfismo de Nucleótido Simple , Receptor Notch1/metabolismo , Esclerosis Tuberosa/patología , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/fisiología , Angiomiolipoma/genética , Angiomiolipoma/metabolismo , Angiomiolipoma/patología , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Movimiento Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Ratones , Mutación , Proteína Nodal/genética , Receptor Notch1/genética , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética
8.
Sci Rep ; 9(1): 3015, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816188

RESUMEN

Tuberous Sclerosis Complex (TSC) and Lymphangioleiomyomatosis (LAM) are caused by inactivating mutations in TSC1 or TSC2, leading to mTORC1 hyperactivation. The mTORC1 inhibitors rapamycin and analogs (rapalogs) are approved for treating of TSC and LAM. Due to their cytostatic and not cytocidal action, discontinuation of treatment leads to tumor regrowth and decline in pulmonary function. Therefore, life-long rapalog treatment is proposed for the control of TSC and LAM lesions, which increases the chances for the development of acquired drug resistance. Understanding the signaling perturbations leading to rapalog resistance is critical for the development of better therapeutic strategies. We developed the first Tsc2-null rapamycin-resistant cell line, ELT3-245, which is highly tumorigenic in mice, and refractory to rapamycin treatment. In vitro ELT3-245 cells exhibit enhanced anchorage-independent cell survival, resistance to anoikis, and loss of epithelial markers. A key alteration in ELT3-245 is increased ß-catenin signaling. We propose that a subset of cells in TSC and LAM lesions have additional signaling aberrations, thus possess the potential to become resistant to rapalogs. Alternatively, when challenged with rapalogs TSC-null cells are reprogrammed to express mesenchymal-like markers. These signaling changes could be further exploited to induce clinically-relevant long-term remissions.


Asunto(s)
Resistencia a Medicamentos/genética , Mesodermo/metabolismo , Esclerosis Tuberosa/genética , Animales , Anoicis/efectos de los fármacos , Anoicis/genética , Carcinogénesis/genética , Carcinogénesis/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/genética , Resistencia a Medicamentos/efectos de los fármacos , Humanos , Linfangioleiomiomatosis/tratamiento farmacológico , Linfangioleiomiomatosis/genética , Linfangioleiomiomatosis/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Mesodermo/efectos de los fármacos , Ratones , Mutación/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sirolimus/farmacología
9.
Physiol Rep ; 7(2): e13983, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30675765

RESUMEN

Tuberous sclerosis complex (TSC) is a tumor predisposition syndrome with significant renal cystic and solid tumor disease. While the most common renal tumor in TSC, the angiomyolipoma, exhibits a loss of heterozygosity associated with disease, we have discovered that the renal cystic epithelium is composed of type A intercalated cells that have an intact Tsc gene that have been induced to exhibit Tsc-mutant disease phenotype. This mechanism appears to be different than that for ADPKD. The murine models described here closely resemble the human disease and both appear to be mTORC1 inhibitor responsive. The induction signaling driving cystogenesis may be mediated by extracellular vesicle trafficking.


Asunto(s)
Enfermedades Renales Quísticas/patología , Esclerosis Tuberosa/patología , Animales , Modelos Animales de Enfermedad , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Femenino , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Noqueados , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
10.
Sci Rep ; 7(1): 16697, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29196670

RESUMEN

Tuberous sclerosis complex (TSC) is a rare autosomal dominant disorder causing benign tumors in the brain and other vital organs. The genes implicated in disease development are TSC1 and TSC2. Here, we have performed mutational analysis followed by a genotype-phenotype correlation study based on the clinical characteristics of the affected individuals. Twenty unrelated probands or families from Greece have been analyzed, of whom 13 had definite TSC, whereas another 7 had a possible TSC diagnosis. Using direct sequencing, we have identified pathogenic mutations in 13 patients/families (6 in TSC1 and 7 in TSC2), 5 of which were novel. The mutation identification rate for patients with definite TSC was 85%, but only 29% for the ones with a possible TSC diagnosis. Multiplex ligation-dependent probe amplification (MLPA) did not reveal any genomic rearrangements in TSC1 and TSC2 in the samples with no mutations identified. In general, TSC2 disease was more severe than TSC1, with more subependymal giant cell astrocytomas and angiomyolipomas, higher incidence of pharmacoresistant epileptic seizures, and more severe neuropsychiatric disorders. To our knowledge, this is the first comprehensive TSC1 and TSC2 mutational analysis carried out in TSC patients in Greece.


Asunto(s)
Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Esclerosis Tuberosa/patología , Adulto , Niño , Análisis Mutacional de ADN , Exones , Femenino , Eliminación de Gen , Estudios de Asociación Genética , Grecia , Humanos , Masculino , Mutación Missense , Linaje , Estructura Terciaria de Proteína , Esclerosis Tuberosa/genética
11.
J Immunol ; 198(7): 2989-2999, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28228558

RESUMEN

Relatively little is known about factors that initiate immunosuppression in tumors and act at the interface between tumor cells and host cells. In this article, we report novel immunosuppressive properties of the ribosomal protein S19 (RPS19), which is upregulated in human breast and ovarian cancer cells and released from apoptotic tumor cells, whereupon it interacts with the complement C5a receptor 1 expressed on tumor infiltrating myeloid-derived suppressor cells. This interaction promotes tumor growth by facilitating recruitment of these cells to tumors. RPS19 also induces the production of immunosuppressive cytokines, including TGF-ß, by myeloid-derived suppressor cells in tumor-draining lymph nodes, leading to T cell responses skewed toward Th2 phenotypes. RPS19 promotes generation of regulatory T cells while reducing infiltration of CD8+ T cells into tumors. Reducing RPS19 in tumor cells or blocking the C5a receptor 1-RPS19 interaction decreases RPS19-mediated immunosuppression, impairs tumor growth, and delays the development of tumors in a transgenic model of breast cancer. This work provides initial preclinical evidence for targeting RPS19 for anticancer therapy enhancing antitumor T cell responses.


Asunto(s)
Células Supresoras de Origen Mieloide/inmunología , Neoplasias Experimentales/inmunología , Receptor de Anafilatoxina C5a/inmunología , Proteínas Ribosómicas/inmunología , Animales , Western Blotting , Línea Celular Tumoral , Citometría de Flujo , Humanos , Inmunoprecipitación , Ratones , Linfocitos T/inmunología
12.
Cytometry A ; 87(5): 451-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25728685

RESUMEN

Autophagy dysregulation has been implicated in numerous diseases and many therapeutic agents are known to modulate this pathway. Therefore, the ability to accurately monitor autophagy is critical to understanding its role in the pathogenesis and treatment of many diseases. Recently an imaging flow cytometry method measuring colocalization of microtubule associated protein 1B light chain 3 (LC3) and lysosomal signals via Bright Detail Similarity (BDS) was proposed which enabled evaluation of autophagic processing. However, since BDS only evaluates colocalization of LC3 and lysosomal signals, the number of autophagy organelles was not taken into account. We found that in cells classified as having Low BDS, there was a large degree of variability in accumulation of autophagosomes. Therefore, we developed a new approach wherein BDS was combined with number of LC3+ puncta, which enabled us to distinguish between cells having very few autophagy organelles versus cells with accumulation of autophagosomes or autolysosomes. Using this method, we were able to distinguish and quantify autophagosomes and autolysosomes in breast cancer cells cultured under basal conditions, with inhibition of autophagy using chloroquine, and with induction of autophagy using amino acid starvation. This technique yields additional insight into autophagy processing making it a useful supplement to current techniques.


Asunto(s)
Autofagia , Rastreo Celular , Citometría de Flujo/métodos , Línea Celular Tumoral , Cloroquina/farmacología , Proteínas Fluorescentes Verdes/química , Humanos , Lisosomas/patología , Proteínas Asociadas a Microtúbulos/aislamiento & purificación , Proteínas Asociadas a Microtúbulos/metabolismo , Fagosomas/patología
13.
Cell Cycle ; 14(3): 399-407, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25565629

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) increases translation, cell size and angiogenesis, and inhibits autophagy. mTORC1 is negatively regulated by hamartin and tuberin, the protein products of the tumor suppressors TSC1 and TSC2 that are mutated in Tuberous Sclerosis Complex (TSC) and sporadic Lymphangioleiomyomatosis (LAM). Hamartin interacts with the centrosomal and mitotic kinase polo-like kinase 1 (PLK1). Hamartin and tuberin deficient cells have abnormalities in centrosome duplication, mitotic progression, and cytokinesis, suggesting that the hamartin/tuberin heterodimer and mTORC1 signaling are involved in centrosome biology and mitosis. Here we report that PLK1 protein levels are increased in hamartin and tuberin deficient cells and LAM patient-derived specimens, and that this increase is rapamycin-sensitive. Pharmacological inhibition of PLK1 by the small-molecule inhibitor BI-2536 significantly decreased the viability and clonogenic survival of hamartin and tuberin deficient cells, which was associated with increased apoptosis. BI-2536 increased p62, LC3B-I and GFP-LC3 punctae, and inhibited HBSS-induced degradation of p62, suggesting that PLK1 inhibition attenuates autophagy. Finally, PLK1 inhibition repressed the expression and protein levels of key autophagy genes and proteins and the protein levels of Bcl(-)2 family members, suggesting that PLK1 regulates both autophagic and apoptotic responses. Taken together, our data point toward a previously unrecognized role of PLK1 on the survival of cells with mTORC1 hyperactivation, and the potential use of PLK1 inhibitors as novel therapeutics for tumors with dysregulated mTORC1 signaling, including TSC and LAM.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Pteridinas/farmacología , Proteínas Supresoras de Tumor/deficiencia , Animales , Apoptosis/genética , Autofagia/genética , Proteínas de Ciclo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Clonales , Regulación de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sirolimus/farmacología , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo , Quinasa Tipo Polo 1
14.
Cell Cycle ; 9(6): 1143-55, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20237422

RESUMEN

Studies of the role of tuberous sclerosis complex (TSC) proteins (TSC1/TSC2) in pathology have focused mainly on their capacity to regulate translation and cell growth, but their relationship with alterations of cellular structures and the cell cycle is not yet fully understood. The transforming acidic coiled-coil (TACC) domain-containing proteins are central players in structures and processes connected to the centrosome. Here, TACC3 interactome mapping identified TSC2 and 15 other physical interactors, including the evolutionary conserved interactions with ch-TOG/CKAP5 and FAM161B. TACC3 and TSC2 co-localize and co-purify with components of the nuclear envelope, and their deficiency causes morphological alterations of this structure. During cell division, TACC3 is necessary for the proper localization of phospho-Ser939 TSC2 at spindle poles and cytokinetic bridges. Accordingly, abscission alterations and increased frequency of binucleated cells were observed in Tacc3- and Tsc2-deficient cells relative to controls. In regulating cell division, TSC2 acts epistatically to TACC3 and, in addition to canonical TSC/mTOR signaling and cytokinetic associations, converges to the early mitotic checkpoint mediated by CHFR, consistently with nuclear envelope associations. Our findings link TACC3 to novel structural and cell division functions of TSC2, which may provide additional explanations for the clinical and pathological manifestations of lymphangioleiomyomatosis (LAM) disease and TSC syndrome, including the greater clinical severity of TSC2 mutations compared to TSC1 mutations.


Asunto(s)
División Celular , Proteínas Asociadas a Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Núcleo Celular/metabolismo , Supervivencia Celular , Centrosoma/metabolismo , Citocinesis , Epistasis Genética , Células HEK293 , Células HeLa , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/deficiencia , Mitosis , Fosfoserina/metabolismo , Unión Proteica , Transporte de Proteínas , Huso Acromático/metabolismo , Fracciones Subcelulares/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/deficiencia
15.
Genes Chromosomes Cancer ; 49(3): 282-97, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20013896

RESUMEN

Specificity protein 1 (SP1) is an essential transcription factor implicated in the regulation of genes that control multiple cellular processes, including cell cycle, apoptosis, and DNA damage. Very few nontranscriptional roles for SP1 have been reported thus far. Using confocal microscopy and centrosome fractionation, we identified SP1 as a centrosomal protein. Sp1-deficient mouse embryonic fibroblasts and cells depleted of SP1 by RNAi have increased centrosome number associated with centriole splitting, decreased microtubule nucleation, chromosome misalignment, formation of multipolar mitotic spindles and micronuclei, and increased incidence of aneuploidy. Using mass spectrometry, we identified P70S6K, an effector of the mTOR/raptor (mTORC1) kinase complex, as a novel interacting protein of SP1. We found that SP1-deficient cells have increased phosphorylation of the P70S6K effector ribosomal protein S6, suggesting that SP1 participates in the regulation of the mTORC1/P70S6K/S6 signaling pathway. We previously reported that aberrant mTORC1 activation leads to supernumerary centrosomes, a phenotype rescued by the mTORC1 inhibitor rapamycin. Similarly, treatment with rapamycin rescued the multiple centrosome phenotype of SP1-deficient cells. Taken together, these data strongly support the hypothesis that SP1 is involved in the control of centrosome number via regulation of the mTORC1 pathway, and predict that loss of SP1 function can lead to aberrant centriole splitting, deregulated mTORC1 signaling, and aneuploidy, thereby contributing to malignant transformation.


Asunto(s)
Centriolos/fisiología , Inestabilidad Cromosómica , Silenciador del Gen , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factor de Transcripción Sp1/metabolismo , Células 3T3 , Animales , Apoptosis , Ciclo Celular , Línea Celular , Centrosoma/fisiología , Centrosoma/ultraestructura , Daño del ADN , Regulación de la Expresión Génica , Células HeLa , Humanos , Ratones , Interferencia de ARN/fisiología , Factor de Transcripción Sp1/deficiencia , Factor de Transcripción Sp1/genética , Serina-Treonina Quinasas TOR
16.
Proc Natl Acad Sci U S A ; 106(8): 2635-40, 2009 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-19202070

RESUMEN

Lymphangioleiomyomatosis (LAM) is an often fatal disease primarily affecting young women in which tuberin (TSC2)-null cells metastasize to the lungs. The mechanisms underlying the striking female predominance of LAM are unknown. We report here that 17-beta-estradiol (E(2)) causes a 3- to 5-fold increase in pulmonary metastases in male and female mice, respectively, and a striking increase in circulating tumor cells in mice bearing tuberin-null xenograft tumors. E(2)-induced metastasis is associated with activation of p42/44 MAPK and is completely inhibited by treatment with the MEK1/2 inhibitor, CI-1040. In vitro, E(2) inhibits anoikis of tuberin-null cells. Finally, using a bioluminescence approach, we found that E(2) enhances the survival and lung colonization of intravenously injected tuberin-null cells by 3-fold, which is blocked by treatment with CI-1040. Taken together these results reveal a new model for LAM pathogenesis in which activation of MEK-dependent pathways by E(2) leads to pulmonary metastasis via enhanced survival of detached tuberin-null cells.


Asunto(s)
Supervivencia Celular/fisiología , Estrógenos/fisiología , Neoplasias Pulmonares/patología , Proteínas Supresoras de Tumor/fisiología , Animales , Anoicis/fisiología , Benzamidas/farmacología , Proteínas Portadoras/antagonistas & inhibidores , Femenino , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Ratones , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Metástasis de la Neoplasia , Ovariectomía , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Ratas , Serina-Treonina Quinasas TOR , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética
17.
Cell Cycle ; 8(24): 4168-75, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20054236

RESUMEN

Tuberous sclerosis complex 1 (TSC1) inhibits mammalian target of rapamycin (mTOR), a central promotor of cell growth and proliferation. The protein product of the TSC1 gene, hamartin (referred to as TSC1) is known to interact with Polo-like kinase 1 (Plk1) in a cell cycle regulated, phosphorylation-dependent manner. We hypothesized that the p53 target gene, Plk2, is a tumor suppressor, mediating its tumor suppressor function through interactions with TSC1 that facilitate TSC1/2 restraint of mTOR under hypoxic stress. We found that human lung tumor cells deficient in Plk2 grew larger than control tumors, and that Plk2 interacts with endogenous TSC1 protein. Additionally, C-terminal Plk2-GST fusion protein bound both TSC1 and TSC2 proteins. TSC1 levels were elevated in response to Adriamycin and cells transiently overexpressing Plk2 demonstrated decreased phosphorylation of the downstream target of mTOR, ribosomal protein p70S6 kinase during hypoxia. Plk2 levels were inversely correlated with cytoplasmic p70S6K phosphorylation. Plk2 levels did not increase in response to DNA damage (Adriamycin, CPT -11) when HCT 116 and H460 cells were exposed to hypoxia. TSC1-deficient mouse embryonic fibroblasts with TSC1 added back demonstrated decreased S6K phosphorylation, which was further decreased when Plk2 was transiently overexpressed. Interestingly, under normoxia, Plk2 deficient tumor cells demonstrated increased apoptosis in response to various chemotherapeutic agents including CPT -11 but increased resistance to apoptotic death after CPT-11 treatment under hypoxia, and tumor xenografts comprised of these Plk2-deficient cells were resistant to CPT -11. Our results point to a novel Plk2-TSC1 interaction with effects on mTOR signaling during hypoxia, and tumor growth that may enable targeting Plk2 signaling in cancer therapy.


Asunto(s)
Resistencia a Antineoplásicos/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Hipoxia de la Célula/fisiología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Supervivencia de Injerto/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR , Trasplante Heterólogo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética
18.
Methods Mol Med ; 126: 185-96, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16930013

RESUMEN

Tuberous sclerosis complex (TSC) is a neurocutaneous syndrome characterized by seizures, mental retardation, and benign tumors of many organs, including the brain, kidneys, skin, retina, and heart. TSC is caused by mutations in the TSC1 and TSC2 tumor suppressor genes. The genes follow the two-hit model for tumorigenesis, with germline mutations inactivating one allele and somatic mutations inactivating the remaining wild-type allele. Allelic loss (also called loss of heterozygosity [LOH]) in the 9q34 and 16p13 regions has been found in many tumor types from TSC patients. Cardiac rhabdomyomas are frequently found in infants with TSC. Because rhabdomyomas often spontaneously regress, access to fresh tissue is limited. In this chapter, we present methodology for detection of genetic inactivation of TSC1 and TSC2 in paraffin-embedded archival tissues. The template DNA is obtained either by direct scraping of tissue or after laser capture microdissection. LOH analysis is performed after polymerase chain reaction amplification of microsatellite markers in the 9q34 and 16p13 regions and denaturing polyacrylamide gel electrophoresis. Mutation detection is performed using single-strand conformation polymorphisms on mutation detection enhancement gels. Finally, variant bands are amplified and analyzed by direct sequencing.


Asunto(s)
Análisis Mutacional de ADN/métodos , Genes Supresores de Tumor , Mutación/genética , Bancos de Tejidos , ADN/genética , ADN/aislamiento & purificación , Humanos , Lactante , Pérdida de Heterocigocidad/genética , Repeticiones de Microsatélite/genética , Adhesión en Parafina , Reacción en Cadena de la Polimerasa , Polimorfismo Conformacional Retorcido-Simple
19.
Mod Pathol ; 19(6): 839-46, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16575396

RESUMEN

Lymphangioleiomyomatosis is a progressive lung disease characterized by a diffuse proliferation of pulmonary smooth muscle cells and cystic degeneration. Lymphangioleiomyomatosis can occur either independently of other disease or in association with tuberous sclerosis complex, a tumor-suppressor gene syndrome caused by mutations that inactivate either TSC1 or TSC2. TSC2 mutations and loss of heterozygosity have been identified in sporadic lymphangioleiomyomatosis-associated angiomyolipomas, thus implicating the TSC/Ras homolog-enriched in brain (Rheb)/mammalian target of Rapamycin (mTOR)/p70 S6 kinase signaling pathway in their pathogenesis. This study was undertaken to determine whether the mTOR/p70 S6 kinase signaling pathway is activated in lymphangioleiomyomatosis-associated angiomyolipomas lacking TSC1/TSC2 loss of heterozygosity. Phospho-ribosomal protein S6 (Ser235/236) immunohistochemistry was performed on five lymphangioleiomyomatosis-associated angiomyolipomas, two matched lymphangioleiomyomatosis pulmonary samples, and three sporadic angiomyolipomas. TSC1/TSC2 loss of heterozygosity was previously excluded in these angiomyolipomas. Moderate or strong phospho-ribosomal protein S6 immunoreactivity was found in all lymphangioleiomyomatosis-associated and sporadic angiomyolipomas, suggesting a high incidence of mTOR/p70 S6 kinase signaling pathway activation despite a lack of TSC1/TSC2 loss of heterozygosity. Focally positive phospho-S6 staining was also evident in both lymphangioleiomyomatosis pulmonary samples. We hypothesized that this S6 hyperphosphorylation could reflect mutational activation of Rheb or Rheb-like protein (RhebL1), Ras family members which directly activate mTOR. Mutational analysis performed on DNA from these eight angiomyolipomas plus five additional sporadic angiomyolipomas did not reveal mutations in exons 3 and 4 (homologous sites of Ras activating mutations) of either Rheb or RhebL1. These data suggest that activation of the Rheb/mTOR/p70 S6 kinase pathway is related to the pathogenesis of lymphangioleiomyomatosis-associated and sporadic angiomyolipomas lacking TSC1/TSC2 loss of heterozygosity. This high incidence of mTOR signaling pathway activation suggests that treatment with mTOR inhibitors, such as Rapamycin, may benefit patients with angiomyolipomas independent of the detection of TSC1/TSC2 loss of heterozygosity.


Asunto(s)
Angiomiolipoma/metabolismo , Neoplasias Pulmonares/metabolismo , Linfangioleiomiomatosis/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteína S6 Ribosómica/metabolismo , Angiomiolipoma/patología , Biomarcadores de Tumor/metabolismo , Análisis Mutacional de ADN , ADN de Neoplasias/análisis , Humanos , Técnicas para Inmunoenzimas , Neoplasias Pulmonares/patología , Linfangioleiomiomatosis/patología , Proteínas de Unión al GTP Monoméricas/metabolismo , Neoplasias Primarias Múltiples , Neuropéptidos/metabolismo , Fosforilación , Proteína Homóloga de Ras Enriquecida en el Cerebro , Transducción de Señal , Serina-Treonina Quinasas TOR , Proteínas ras/metabolismo
20.
Hum Mol Genet ; 15(2): 287-97, 2006 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-16339216

RESUMEN

Tuberous sclerosis complex (TSC) is a tumor suppressor gene syndrome caused by mutations in TSC1 and TSC2. Hamartin and tuberin, the products of TSC1 and TSC2, respectively, form heterodimers and inhibit the mammalian target of rapamycin. Previously, we have shown that hamartin is phosphorylated by CDC2/cyclin B1 during the G(2)/M phase of the cell cycle. Here, we report that hamartin is localized to the centrosome and that phosphorylated hamartin and phosphorylated tuberin co-immunoprecipitate with the mitotic kinase Plk1. Plk1 interacts with the N-terminus of hamartin (amino acids 1-880), which contains two potential Plk1-binding sites (T310 and S332). Phosphorylated hamartin interacts with Plk1 independent of tuberin with all three proteins present in a complex. A non-phosphorylatable hamartin mutant with an alanine substitution at residue T310 does not interact with Plk1, whereas a non-phosphorylatable hamartin mutant at residue S332 in conjunction with alanine mutations at the other CDC2/cyclin B1 sites (T417, S584 and T1047) does not impact hamartin binding to Plk1. Hamartin negatively regulates the protein levels of Plk1. Finally, Tsc1(-/-) mouse embryonic fibroblasts (MEFs) have increased number of centrosomes and increased DNA content, compared to Tsc1(+/+) cells. Both phenotypes are rescued after pre-treatment with the mTOR inhibitor rapamycin. RNAi inhibition of Plk1 in Tsc1(-/-) MEFs failed to rescue the increased centrosome number phenotype. These data reveal a novel subcellular localization for hamartin and a novel interaction partner for the hamartin/tuberin complex and implicate hamartin and mTOR in the regulation of centrosome duplication.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Fraccionamiento Celular , Línea Celular , Chlorocebus aethiops , Citometría de Flujo , Humanos , Immunoblotting , Inmunoprecipitación , Ratones , Microscopía Fluorescente , Mutación/genética , Fosforilación , Unión Proteica , Interferencia de ARN , Sirolimus/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Quinasa Tipo Polo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA