Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202407430, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884885

RESUMEN

The Cu-glutathione (GSH) redox system, essential in biology, is designed here as a supramacromolecular assembly in which the tetrahedral 18e Cu(I) center loses a thiol ligand upon adsorption onto ZIF-8, as shown by EXAFS and DFT calculation, to generate a very robust 16e planar trigonal single-atom Cu(I) catalyst. Synergy between Cu(I) and ZIF-8, revealed by catalytic experiments and DFT, affords CO2 conversion into high-value-added chemicals with a wide scope of substrates by reaction with terminal alkynes or propargyl amines in excellent yields under mild conditions and reuse at least 10 times without significant decrease in catalytic efficiency.

2.
RSC Adv ; 14(27): 19459-19471, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38887643

RESUMEN

This study explores the stabilization by niobic acid, of Pt, Ni, Pd, and Au nanoparticles (NPs) for the efficient microheterogeneous catalysis of NaBH4 hydrolysis for hydrogen production. Niobic acid is the most widely studied Nb2O5 polymorph, and it is employed here for the first time for this key reaction relevant to green energy. Structural insights from XRD, Raman, and FTIR spectroscopies, combined with hydrogen production data, reveal the role of niobic acid's Brønsted acidity in its catalytic activity. The supported NPs showed significantly higher efficiency than the non-supported counterparts regarding turnover frequency, average hydrogen production rate, and cost. Among the tested NPs, PtNPs and NiNPs demonstrate the most favorable results. The data imply mechanism changes during the reaction, and the kinetic isotope assay indicates a primary isotope effect. Reusability assays demonstrate consistent yields over five cycles for PtNPs, although catalytic efficiency decreases, likely due to the formation of reaction byproducts.

3.
J Colloid Interface Sci ; 660: 469-477, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38246050

RESUMEN

Unsaturated furanic aldehydes are derived from lignocellulosic biomass resources and subsequently used to produce valuable chemicals. However, the highly efficient, selective hydrogenation of the biomass-derived unsaturated furan CO bond remains challenging. Here we report that graphene-like nitrogen doped porous carbon (GNPC) nanosheets are synthesized from carbon-rich, sustainable, and renewable biomass precursors (glucose, fructose and 5-hydroxymethylfurfural, HMF) with high surface areas, large pore volumes and narrow mesopores. GNPC derived from HMF is an excellent catalyst support for PtCo nanoparticles with ultrafine nanoparticles size and homogeneous distributions. This catalyst is highly efficient for hydrogenation of biomass-derived furan-based unsaturated aldehydes, with high yields, to the corresponding unsaturated alcohols under mild conditions. This design strategy should further allow the development of selective, simple, green heterogeneous catalysts for challenging chemical transformations.

4.
Small ; : e2307862, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38054770

RESUMEN

Electrocatalytic transformation of CO2 to various syngas compositions is an exceedingly attractive approach to carbon-neutral recycling. Meanwhile, the achievement of selectivity, stability, and tunability of product ratios using single-component electrocatalysts is challenging. Herein, the theoretically-assisted design of the triple-component nanocomposite electrocatalyst Cu10 Sn3 -Cu-SnOx that addresses this challenge is presented. It is shown that Cu10 Sn3 is a valuable electrocatalyst for suitable CO2 reduction to CO, SnO2 for CO2 reduction to formate at large overpotentials, and that the Cu-SnO2 interface facilitates H2 evolution. Accordingly, the interaction between the three functional components affords tunable CO/H2 ratios, from 1:2 to 2:1, of the produced syngas by controlling the applied potentials and relative contents of functional components. The syngas generation is selective (Faradaic efficiency, FE = 100%) at relatively lower cathodic potentials, whereas formate is the only liquid product detected at relatively higher cathodic potentials. The theoretically guided design approach therefore provides a new opportunity to boost the selectivity and stability of CO2 reduction to tunable syngas.

5.
Chem Sci ; 15(1): 204-212, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38131073

RESUMEN

Lignin, the most abundant natural material, is considered as a low-value commercial biomass waste from paper mills and wineries. In an effort to turn biomass waste into a highly valuable material, herein, a new-type of hollow carbon nanospheres (HCNs) is designed and synthesized by pyrolysis of biomass dealkali lignin, as an efficient nanocatalyst for the elimination of antibiotics in complex water matrices. Detailed characterization shows that HCNs possess a hollow nanosphere structure, with abundant graphitic C/N and surface N and O-containing functional groups favorable for peroxydisulfate (PDS) activation. Among them, HCN-500 provides the maximum degradation rate (95.0%) and mineralization efficiency (74.4%) surpassing those of most metal-based advanced oxidation processes (AOPs) in the elimination of oxytetracycline (OTC). Density functional theory (DFT) calculations and high-resolution mass spectroscopy (HR-MS) were employed to reveal the possible degradation pathway of OTC elimination. In addition, the HCN-500/PDS system is also successfully applied to real antibiotics removal in complex water matrices (e.g. river water and tap water), with excellent catalytic performances.

6.
Nat Chem ; 15(11): 1650, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37907604
7.
Pharmaceutics ; 15(8)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37631259

RESUMEN

Ferrocene has been the most used organometallic moiety introduced in organic and bioinorganic drugs to cure cancers and various other diseases. Following several pioneering studies, two real breakthroughs occurred in 1996 and 1997. In 1996, Jaouen et al. reported ferrocifens, ferrocene analogs of tamoxifen, the chemotherapeutic for hormone-dependent breast cancer. Several ferrocifens are now in preclinical evaluation. Independently, in 1997, ferroquine, an analog of the antimalarial drug chloroquine upon the introduction of a ferrocenyl substituent in the carbon chain, was reported by the Biot-Brocard group and found to be active against both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. Ferroquine, in combination with artefenomel, completed phase IIb clinical evaluation in 2019. More than 1000 studies have been published on ferrocenyl-containing pharmacophores against infectious diseases, including parasitic, bacterial, fungal, and viral infections, but the relationship between structure and biological activity has been scarcely demonstrated, unlike for ferrocifens and ferroquines. In a majority of ferrocene-containing drugs, however, the production of reactive oxygen species (ROS), in particular the OH. radical, produced by Fenton catalysis, plays a key role and is scrutinized in this mini-review, together with the supramolecular approach utilizing drug delivery nanosystems, such as micelles, metal-organic frameworks (MOFs), polymers, and dendrimers.

8.
ACS Appl Mater Interfaces ; 15(19): 23343-23352, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37129910

RESUMEN

Hydrogen (H2) generation and storage are actively investigated to provide a green source of energy, and formic acid (HCOOH), a major product obtained from the biomass, is regarded as a productive source of H2. Therefore, improvements in heterogeneous catalysts are called for. Here, a novel type of catalyst support is proposed involving simple addition of the mixture of metal ion precursors to core-shell ZIF-8@ZIF-67, followed by reduction with NaBH4, with performances surpassing those obtained using nanocatalysts in ZIF-8 or ZIF-67. The nanocatalysts PdxAg were optimized with ZIF-8@Pd2Ag1@ZIF-67 under visible-light illumination for selective HCOOH dehydrogenation involving a turnover frequency value of 430 h-1 under light irradiation at 353 K. These results also reveal the crucial roles of the Pd sites electronically promoted in the presence of visible light by the Ag plasmon resonance and the advantageous core-shell MOF structure. In order to examine the potential of extending this catalyst improvement principle to other catalytic reactions, 4-nitrophenol reduction, a benchmarking model of catalytic reaction, was tested, and the results also confirmed the superiority of the performance of ZIF-8@Pd2Ag1@ZIF-67 over Pd2Ag1@ZIF-8 and Pd2Ag1@ZIF-67, confirming the interest in the novel catalyst design.

9.
Chem Commun (Camb) ; 59(48): 7321-7345, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37191211

RESUMEN

This review links various areas of inorganic chemistry around the themes developed by our research group during the last four decades. It is firstly based on the electronic structure of iron sandwich complexes, showing how the metal electron count dictates their reactivities, with various applications (via C-H activation, C-C bond formation) as reducing and oxidizing agents, redox and electrocatalysts and precursors of dendrimers and catalyst templates through bursting reactions. Various electron-transfer processes and consequences are explored, including the influence of the redox state on the acidity of robust ligands and the possibility to iterate in situ C-H activation and C-C bond formation to build arene-cored dendrimers. Examples of how these dendrimers are functionalized are illustrated using the cross olefin metathesis reactions, with application to the synthesis of soft nanomaterials and biomaterials. Mixed and average valence complexes give rise to remarkable subsequent organometallic reactions, including the salt influence on these reactions. The stereo-electronic aspect of these mixed valencies is pointed out in star-shaped multi-ferrocenes with a frustration effect and other multi-organoiron systems, with the perspective of understanding electron-transfer processes among dendrimer redox sites involving electrostatic effects and application to redox sensing and polymer metallocene batteries. Dendritic redox sensing is summarized for biologically relevant anions such as ATP2- with supramolecular exoreceptor interactions at the dendrimer periphery in parallel with the seminal work on metallocene-derived endoreceptors by Beer's group. This aspect includes the design of the first metallodendrimers that have applications in both redox sensing and micellar catalysis with nanoparticles. These properties provide the opportunity to summarize the biomedical (mostly anticancer) applications of ferrocenes, dendrimers and dendritic ferrocenes in biomedicine (in particular the contribution from our group, but not only). Finally, the use of dendrimers as templates for catalysis is illustrated with numerous reactions including C-C bond formation, click reactions and H2 production reactions.

10.
Chemosphere ; 308(Pt 1): 136250, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36057359

RESUMEN

Biomass valorization is essential, particularly in emerging countries. Here, hydrochar from arabica coffee straw was functionalized with a triazole group (HD-TRz) for use as a support of palladium nanoparticles (PdNPs-HD-TRz) applied in the Ullmann coupling reaction for the first time. It provided remarkably excellent selectivities, conversions at a temperature as low as 45 °C and catalyst recyclability, surpassing previous literature performances. Hydrochar was obtained by one-pot reaction via hydrothermal synthesis, using NaOH solution as activating agent and functionalized with a 1,3-triazole group by CuAAC "click" reaction. The PdNPs were prepared via reduction of hydrochar-bound Pd(II) using NaBH4. Hydrochar functionalization was monitored by infrared spectroscopy, and X-ray diffraction (XRD) allowed to observe carbon and palladium planes in hydrochar and PdNPs HD-TRz structures. The PdNPs presented a spherical shape with 2.1 ± 0.1 nm size, homogeneously distributed in the carbon coverslips. The HD-TRz-supported PdNPs were used as a catalyst in the Ullmann reaction of iodobenzene, using ethanol as solvent with 100% of conversion and 91% selectivity at 45 °C. The material was reused, presenting 100% of conversion and selectivities of 92, 84 and 73% for the 1st, 2nd and 3rd cycle, respectively. The scope of the reaction was expanded to other molecules showing the potential of this and other triazole-hydrochar-supported nanocatalysts.


Asunto(s)
Yodobencenos , Nanopartículas del Metal , Carbono , Café , Etanol , Nanopartículas del Metal/química , Paladio/química , Hidróxido de Sodio , Solventes , Triazoles
11.
Nanoscale ; 14(10): 3946-3957, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35229849

RESUMEN

Although the chemistry of carbonyl-protected platinum nanoclusters is well established, their bonding mode remains poorly understood. In most of them, the average Pt oxidation state is zero or slightly negative, leading to the apparent average configuration 5d10 6sε (ε = 0 or very small) and the apparent conclusion that metal-metal bonding cannot arise from the completely filled 5d shell nor from the empty (or almost empty) 6s orbitals. However, DFT calculations show in fact that in these species the actual average configuration is 5d10-x 6sx, which provides to the whole cluster a significant total number of 6s electrons that ensures metal-metal bonding. This ("excited") average configuration is to be related to that of coinage metals in ligated group 11 nanoclusters (nd10 (n + 1)sx). Calculations show that metal-metal bonding in most of these platinum nanoclusters can be rationalized within the concepts of superatoms and supermolecules, in a similar way as for group 11 nanoclusters. The "excited" 5d10-x 6sx configuration results from a level crossing between 5d combinations and 6s combinations, the former transferring their electrons to the latter. This level crossing, which does not exist in the bare Ptn clusters, is induced by the ligand shell, the role of which being thus not innocent with respect to metal-metal bonding.

12.
Small ; 18(17): e2107459, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35306723

RESUMEN

Atom-precise nanoclusters-metal-organic framework (APNC/MOF) composites, as bifunctional material with well-defined structures, have attracted considerable attention in recent years. Despite the progress made to date, there is an urgent need to develop a generic and scalable approach for all APNCs. Herein, the authors present the Exploiting Fracture Strategy (EFS) and successfully construct a super-stable bifunctional APNC/ZIF-8(300 °C) composite overcoming the limitations of previous strategies in selecting APNCs. The EFS utilizes the fracture of ZnN in ZIF-8 after annealing at 300 °C. This method is suitable for all kinds of S/P protected APNCs with different sizes, including uncharged clusters Au1 Ag39 , Ag40 , negatively charged Au12 Ag32 , positively charged Ag46 Au24 , Au4 Cu4 and P-ligand-protected Pd3 Cl. Importantly, the generated APNC/MOF show significantly improved performances, for example, the activities of Au12 Ag32 /ZIF-8(300°C), Au4 Cu4 /ZIF-8(300°C), and Au1 Ag39 /ZIF-8(300°C) in the corresponding reactions are higher than those of Au12 Ag32 , Au4 Cu4 , and Au1 Ag39 , respectively. In particular, Au12 Ag32 /ZIF-8(300 °C) shows higher activity than Au12 Ag32 @ZIF-8. Therefore, this work offers guidance for the design of bifunctional APNC/MOF composites with excellent optimization of properties and opens up new horizons for future related nanomaterial studies and nanocatalyst designs.

13.
Chem Sci ; 12(35): 11722-11729, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34659707

RESUMEN

In an effort to turn waste into wealth, Reactive Red 2 (RR2), a common and refractory organic pollutant in industrial wastewater, has been employed for the first time as a precursor to synthesize carbon nanodots (CNDs) by a facile, green and low-cost route, without utilization of any strong acids or other oxidizers. The detailed characterizations have confirmed that the synthesized CNDs exhibit good water dispersibility, with a mean particle size of 2.43 nm and thickness of 1-3 layers. Importantly, the excellent fluorescence properties and much reduced biotoxicity of the CNDs confer its potential applications in further biological imaging, which has been successfully verified in both in vitro (cell culture) and in vivo (zebrafish) model systems. Thus, it is demonstrated that the synthesized CNDs exhibit nice biocompatibility and fluorescence properties for bioimaging. This work not only provides a novel economical and environmentally friendly approach in recycling a chemical pollutant, but also greatly promotes the potential application of CNDs in biological imaging.

14.
Chemistry ; 27(66): 16291-16308, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34427365

RESUMEN

Electron transfer plays a major role in chemical reactions and processes, and this is particularly true of catalysis by nanomaterials. The advent of metal nanoparticle (NP) catalysts, recently including atomically precise nanoclusters (NCs) as parts of nanocatalyst devices has brought increased control of the relationship between NP and NC structures and their catalytic functions. Consequently, the molecular definition of these new nanocatalysts has allowed a better understanding and management of various kinds of electron transfer involved in the catalytic processes. This Minireview brings a chemist's view of several major aspects of electron-transfer functions concerning NPs and NCs in catalytic processes. Particular focus concerns the role of NPs and NCs as electron reservoirs and light-induced antenna in catalytic processes from H2 generation to more complex reactions and sustainable energy production.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Catálisis , Transporte de Electrón , Electrones
15.
Dalton Trans ; 50(34): 11852-11860, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34369506

RESUMEN

Although dendrimer supports have been known as key parts of nanocatalysts, the capability of rigid dendrimers for this function has not yet been reported. Here, the study is focused on ferrocenylmethylenetriazolyl-terminated dendrimers (FcMTPD) as supports of remarkably efficient nanogold and nanopalladium catalysts. A biphasic system is elaborated to evaluate the catalytic activity of FcMTPD-supported Au and Pd nanoparticles (NPs) for the reduction of 4-nitrophenol to 4-aminophenol by NaBH4 at 20 °C, and FcMTPD-supported PdNPs are found to be the best nanocatalysts with a rate constant kapp = 7.8 × 10-2 s-1. Excellent catalytic results are also obtained in this reaction for FcMTPD-supported AuNPs with a rate constant kapp = 5.6 × 10-2 s-1. For both Pd NPs and AuNPs, the kinetic results are shown to strongly depend on the method of preparation of these NPs that influences the NP size and thus their catalytic efficiency. The FcMTPD-stabilized PdNPs are easily recovered and reused at least 13 times, and their catalytic performance displays only a slight decrease during the first seven runs.

16.
J Am Chem Soc ; 143(33): 12948-12954, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34291930

RESUMEN

The promising field of nanomedicine stimulates a continuous search for multifunctional nanotheranostic systems for imaging and drug delivery. Herein, we demonstrate that application of supramolecular chemistry's concepts in dendritic assemblies can enable the formation of advanced dendrimer-based nanotheranostic devices. A dendrimer bearing 81 triazolylferrocenyl terminal groups adopts a more compact shell-like structure in polar solvents with the ferrocenyl peripheral groups backfolding toward the hydrophobic dendrimer interior, while exposing the more polar triazole moieties as the dendritic shell. Akin to lipids, the compact dendritic structure self-assembles into uniform nanovesicles that in turn self-assemble into larger vesosomes in water. The vesosomes emit green nontraditional intrinsic fluorescence (NTIL), which is an emerging property as there are no classical fluorophores in the dendritic macromolecular structure. This work confirms the hypothesis that the NTIL emission is greatly enhanced by rigidification of the supramolecular assemblies containing heteroatomic subluminophores (HASLs) and by the presence of electron rich functional groups on the periphery of dendrimers. This work is the first one detecting NTIL in ferrocenyl-terminated dendrimers. Moreover, the vesosomes are stable in biological medium, are uptaken by cells, and show cytotoxic activity against cancer cells. Accordingly, the self-organization of these dendrimers into tertiary structures promotes the emergence of new properties enabling the same component, in this case, ferrocenyl group, to function as both antitumoral drug and fluorophore.

17.
Chem Sci ; 12(10): 3660-3667, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34163640

RESUMEN

By introducing 1,1'-bis-(diphenylphosphino)ferrocene (dppf) as an activating ligand, two novel nanoclusters, M1Ag21 (M = Au/Ag), have been controllably synthesized and structurally characterized. The atomically precise structures of the M1Ag21 nanoclusters were determined by SCXC and further confirmed by ESI-TOF-MS, TGA, XPS, DPV, and FT-IR measurements. The M1Ag21 nanoclusters supported on activated carbon (C) are exploited as efficient oxygen reduction reaction (ORR) catalysts in alkaline solutions. Density functional theory (DFT) calculations verify that the catalytic activities of the two cluster-based systems originate from the significant ensemble synergy effect between the M13 kernel and dppf ligand in M1Ag21. This work sheds lights on the preparation of cluster-based electrocatalysts and other catalysts that are activated and modified by peripheral ligands.

18.
Angew Chem Int Ed Engl ; 60(24): 13554-13558, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33730408

RESUMEN

The first all-metallocene rechargeable battery consisting of poly-cobaltocenium/- and poly-ferrocene/reduced graphene oxide composites as anode and cathode was prepared. The intrinsically fast ET self-exchange rate of metallocenes was successfully combined with an efficient ion-percolation achieved by molecular self-assembly. The resulting battery materials show ideal Nernstian behavior, is thickness scalable up to >1.2 C cm-2 , and exhibit high coulombic efficiency at ultrafast rates (200 A g-1 ). Using aqueous LiClO4 , the charge is carried exclusively by the anion. The ClO4 - intercalation is accompanied by a reciprocal height change of the active layers. Principally, volume changes in organic battery materials during charging/discharging are not desirable and represent a major safety issue. However, here, the individual height changes-due to ion breathing-are reciprocal and thus prohibiting any internal pressure build-up in the closed-cell, leading to excellent cycling stability.

19.
Macromol Rapid Commun ; 42(11): e2100049, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33723879

RESUMEN

A new side-chain ferrocene (Fc)-containing polyelectrolyte has been synthesized by controlled ring-opening metathesis polymerization of a water-soluble Fc-containing norbornene-based quaternary ammonium salt, as well as the corresponding covalently cross-linked polyelectrolyte hydrogel. In order to provide Fc-containing supramolecular polyelectrolyte hydrogels whose swelling property is largely improved by host-guest interaction, a covalently cross-linked polyelectrolyte hydrogel is soaked into the ß-CD aqueous solution to form ß-CD@Fc supramolecular polyelectrolyte hydrogel, or alternatively the quaternary ammonium salt supramolecular monomer is first formed, then copolymerized with a crosslinking agent to fabricate the supramolecular hydrogel with better water absorption ability. All the Fc-containing hydrogels exhibited good redox-responsiveness with swelling-shrinking behaviors by chemically reversibly adjusting the disassembly/assembly of ß-CD@Fc inclusion complexes. This is the first example of side-chain Fc-containing polycationic supramolecular hydrogels possessing swelling-shrinking properties based on the splitting/combining of ß-CD and Fc units, and potential applications are expected as controlled drug delivery and actuators.


Asunto(s)
Hidrogeles , beta-Ciclodextrinas , Metalocenos , Oxidación-Reducción , Polielectrolitos
20.
J Am Chem Soc ; 143(4): 1768-1772, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33482056

RESUMEN

The classic Fokin mechanism of the CuAAC reaction of terminal alkynes using a variety of Cu(I) catalysts is well-known to include alkyne deprotonation involving a bimetallic σ,π-alkynyl intermediate. In this study, we have designed a CNT-supported atomically precise nanocluster Au4Cu4 (noted Au4Cu4/CNT) that heterogeneously catalyzes the CuAAC reaction of terminal alkynes without alkyne deprotonation to a σ,π-alkynyl intermediate. Therefore, three nanocluster-π-alkyne intermediates [Au4Cu4(π-CH≡C-p-C6H4R)], R = H, Cl, and CH3, have been captured and characterized by MALDI-MS. This Au4Cu4/CNT system efficiently catalyzed the CuAAC reaction of terminal alkynes, and internal alkynes also undergo this reaction. DFT results further confirmed that HC≡CPh was activated by π-complexation with Au4Cu4, unlike the classic dehydrogenation mechanism involving the bimetallic σ,π-alkynyl intermediate. On the other hand, a Cu11/CNT catalyst was shown to catalyze the reaction of terminal alkynes following the classic deprotonation mechanism, and both Au11/CNT and Cu11/CNT catalysts were inactive for the AAC reaction of internal alkynes under the same conditions, which shows the specificity of Au4Cu4 involving synergy between Cu and Au in this precise nanocluster. This will offer important guidance for subsequent catalyst design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...