Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39252921

RESUMEN

The introduction of artemisinin combination therapies (ACTs) has significantly reduced the burden of Plasmodium falciparum malaria, yet the emergence of artemisinin partial resistance (ART-R) as well as partner drug resistance threatens these gains. Recent confirmations of prevalent de novo ART-R mutations in Africa, in particular in Rwanda, Uganda and Ethiopia, underscore the urgency of addressing this issue in Africa. Our objective is to characterise this evolving resistance landscape in Africa and understand the speed with which ART-R will continue to spread. We produce estimates of both ART-R and partner drug resistance by bringing together WHO, WWARN and MalariaGen Pf7k data on antimalarial resistance in combination with a literature review. We integrate these estimates within a mathematical modelling approach, aincorporating to estimate parameters known to impact the selection of ART-R for each malaria-endemic country and explore scenarios of ART-R spread and establishment. We identify 16 malaria-endemic countries in Africa to prioritise for surveillance and future deployment of alternative antimalarial strategies, based on ART-R reaching greater than 10% prevalence by 2040 under current malaria burden and effective-treatment coverage. If resistance continues to spread at current rates with no change in drug policy, we predict that partner drug resistance will emerge and the mean percentage of treatment failure across Africa will reach 30.74% by 2060 (parameter uncertainty range: 24.98% - 34.54%). This translates to an alarming number of treatment failures, with 52,980,600 absolute cases of treatment failure predicted in 2060 in Africa (parameter uncertainty range: 26,374,200 - 93,672,400) based on current effective treatment coverage. Our results provide a refined and updated prediction model for the emergence of ART-R to help guide antimalarial policy and prioritise future surveillance efforts and innovation in Africa. These results put into stark context the speed with which antimalarial resistance may spread in Africa if left unchecked, confirming the need for swift and decisive action in formulating antimalarial treatment policies focused on furthering malaria control and containing antimalarial resistance in Africa. The rise of artemisinin partial resistance (ART-R) and increasing partner drug tolerance by Plasmodium falciparum malaria in Africa threatens to undo malaria control efforts. Recent confirmations of de novo ART-R markers in Rwanda, Uganda, and Ethiopia highlight the urgent need to address this threat in Africa, where the vast majority of cases and deaths occur. This study characterises the resistance landscape and predicts the spread of antimalarial resistance across Africa. We estimate and map the current levels of resistance markers related to artemisinin and its partner drugs using WHO, WWARN, and MalariaGen Pf7k data. We combine these estimates with current malaria transmission and treatment data and use an established individual-based model of malaria resistance to simulate future resistance spread. We identify 16 African countries at highest risk of ART-R for prioritisation of enhanced surveillance and alternative antimalarial strategies. We project that, without policy changes, ART-R will exceed 10% in these regions by 2040. By 2060, if resistance spreads unchecked, we predict mean treatment failure rates will reach 30.74% (parameter uncertainty range: 24.98% - 34.54%) across Africa. This alarming spread of resistance is predicted to cause 52.98 million treatment failures (uncertainty range: 26.37 million - 93.67 million) in 2060. The impact of antimalarial resistance in Africa, if left unchecked, would hugely damage efforts to reduce malaria burden. Our results underscore the critical need for swift policy action to contain resistance and guide future surveillance and intervention efforts.

2.
J Infect Dis ; 230(2): 497-504, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38874098

RESUMEN

Newly arrived refugees offer insights into malaria epidemiology in their countries of origin. We evaluated asymptomatic refugee children within 7 days of arrival in Uganda from South Sudan and the Democratic Republic of Congo (DRC) in 2022 for parasitemia, parasite species, and Plasmodium falciparum drug resistance markers. Asymptomatic P. falciparum infections were common in both populations. Coinfection with P. malariae was more common in DRC refugees. Prevalences of markers of aminoquinoline resistance (PfCRT K76T, PfMDR1 N86Y) were much higher in South Sudan refugees, of antifolate resistance (PfDHFR C59R and I164L, PfDHPS A437G, K540E, and A581G) much higher in DRC refugees, and of artemisinin partial resistance (ART-R; PfK13 C469Y and A675V) moderate in both populations. Prevalences of most mutations differed from those seen in Ugandans attending health centers near the refugee centers. Refugee evaluations yielded insights into varied malaria epidemiology and identified markers of ART-R in 2 previously little-studied countries.


Asunto(s)
Antimaláricos , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Refugiados , Humanos , Uganda/epidemiología , Antimaláricos/uso terapéutico , Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Prevalencia , Preescolar , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Malaria Falciparum/tratamiento farmacológico , Femenino , Masculino , Niño , Proteínas Protozoarias/genética , Lactante , Proteínas de Transporte de Membrana/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Sudán/epidemiología , Biomarcadores/sangre , Artemisininas/uso terapéutico , Artemisininas/farmacología , Parasitemia/epidemiología , Parasitemia/tratamiento farmacológico , Plasmodium malariae/genética , Plasmodium malariae/efectos de los fármacos
3.
Lancet Infect Dis ; 24(9): e591-e600, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38552654

RESUMEN

Malaria remains one of the most important infectious diseases in the world, with the greatest burden in sub-Saharan Africa, primarily from Plasmodium falciparum infection. The treatment and control of malaria is challenged by resistance to most available drugs, but partial resistance to artemisinins (ART-R), the most important class for the treatment of malaria, was until recently confined to southeast Asia. This situation has changed, with the emergence of ART-R in multiple countries in eastern Africa. ART-R is mediated primarily by single point mutations in the P falciparum kelch13 protein, with several mutations present in African parasites that are now validated resistance mediators based on clinical and laboratory criteria. Major priorities at present are the expansion of genomic surveillance for ART-R mutations across the continent, more frequent testing of the efficacies of artemisinin-based regimens against uncomplicated and severe malaria in trials, more regular assessment of ex-vivo antimalarial drug susceptibilities, consideration of changes in treatment policy to deter the spread of ART-R, and accelerated development of new antimalarial regimens to overcome the impacts of ART-R. The emergence of ART-R in Africa is an urgent concern, and it is essential that we increase efforts to characterise its spread and mitigate its impact.


Asunto(s)
Antimaláricos , Artemisininas , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Artemisininas/uso terapéutico , Artemisininas/farmacología , Humanos , Antimaláricos/uso terapéutico , Antimaláricos/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Resistencia a Medicamentos/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , África/epidemiología , Proteínas Protozoarias/genética
4.
Nat Rev Microbiol ; 22(6): 373-384, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38321292

RESUMEN

Malaria, mostly due to Plasmodium falciparum infection in Africa, remains one of the most important infectious diseases in the world. Standard treatment for uncomplicated P. falciparum malaria is artemisinin-based combination therapy (ACT), which includes a rapid-acting artemisinin derivative plus a longer-acting partner drug, and standard therapy for severe P. falciparum malaria is intravenous artesunate. The efficacy of artemisinins and ACT has been threatened by the emergence of artemisinin partial resistance in Southeast Asia, mediated principally by mutations in the P. falciparum Kelch 13 (K13) protein. High ACT treatment failure rates have occurred when resistance to partner drugs is also seen. Recently, artemisinin partial resistance has emerged in Rwanda, Uganda and the Horn of Africa, with independent emergences of different K13 mutants in each region. In this Review, we summarize our current knowledge of artemisinin partial resistance and focus on the emergence of resistance in Africa, including its epidemiology, transmission dynamics and mechanisms. At present, the clinical impact of emerging resistance in Africa is unclear and most available evidence suggests that the efficacies of leading ACTs remain excellent, but there is an urgent need to better appreciate the extent of the problem and its consequences for the treatment and control of malaria.


Asunto(s)
Antimaláricos , Artemisininas , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Artemisininas/uso terapéutico , Artemisininas/farmacología , Resistencia a Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Malaria Falciparum/epidemiología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Humanos , Antimaláricos/uso terapéutico , Antimaláricos/farmacología , África/epidemiología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Mutación
6.
medRxiv ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38352505

RESUMEN

Background: Artemisinin partial resistance, mediated by mutations in the Plasmodium falciparum Kelch13 protein (K13), rapidly spread in South-East Asia (SEA), undermining antimalarial efficacies of artemisinin-based combination therapies (ACT). Validated K13 mutations have recently arisen in Africa, but rates of increase are not well characterized. Methods: We investigated K13 mutation prevalence at 16 sites in Uganda (2016-2022, 6586 samples), and five sites in SEA (2003-2018, 5465 samples) by calculating selection coefficients using Bayesian mixed-effect linear models. We then tested whether SEA K13 mutation prevalence could have been forecast accurately using up to the first five years of available data and forecast future K13 mutation prevalence in Uganda. Findings: The selection coefficient for the prevalence of relevant K13 mutations (441L, 469F/Y, 561H, 675V) was estimated at s=0·383 (95% CrI: 0·247 - 0·528) per year, a 38% relative prevalence increase. Selection coefficients across Uganda were s=0·968 (0·463 - 1·569) for 441L, s=0·153 (-0·445 - 0·727) for 469F, s=0·222 (-0·011 - 0·398) for 469Y, and s=0·152 (-0·023 - 0·312) for 675V. In SEA, the selection coefficient was s=-0·005 (-0·852 - 0·814) for 539T, s=0·574 (-0·092 - 1·201) for 580Y, and s=0·308 (0·089 - 0·536) for all validated K13 mutations. Forecast prevalences for Uganda assuming constant selection neared fixation (>95% prevalence) within a decade (2028-2033) for combined K13 mutations. Interpretation: The selection of K13 mutations in Uganda was at a comparable rate to that observed in SEA, suggesting K13 mutations may continue to increase quickly in Uganda. Funding: NIH R01AI156267, R01AI075045, and R01AI089674.

7.
N Engl J Med ; 389(8): 722-732, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37611122

RESUMEN

BACKGROUND: Partial resistance of Plasmodium falciparum to the artemisinin component of artemisinin-based combination therapies, the most important malaria drugs, emerged in Southeast Asia and now threatens East Africa. Partial resistance, which manifests as delayed clearance after therapy, is mediated principally by mutations in the kelch protein K13 (PfK13). Limited longitudinal data are available on the emergence and spread of artemisinin resistance in Africa. METHODS: We performed annual surveillance among patients who presented with uncomplicated malaria at 10 to 16 sites across Uganda from 2016 through 2022. We sequenced the gene encoding kelch 13 (pfk13) and analyzed relatedness using molecular methods. We assessed malaria metrics longitudinally in eight Ugandan districts from 2014 through 2021. RESULTS: By 2021-2022, the prevalence of parasites with validated or candidate resistance markers reached more than 20% in 11 of the 16 districts where surveillance was conducted. The PfK13 469Y and 675V mutations were seen in far northern Uganda in 2016-2017 and increased and spread thereafter, reaching a combined prevalence of 10 to 54% across much of northern Uganda, with spread to other regions. The 469F mutation reached a prevalence of 38 to 40% in one district in southwestern Uganda in 2021-2022. The 561H mutation, previously described in Rwanda, was first seen in southwestern Uganda in 2021, reaching a prevalence of 23% by 2022. The 441L mutation reached a prevalence of 12 to 23% in three districts in western Uganda in 2022. Genetic analysis indicated local emergence of mutant parasites independent of those in Southeast Asia. The emergence of resistance was observed predominantly in areas where effective malaria control had been discontinued or transmission was unstable. CONCLUSIONS: Data from Uganda showed the emergence of partial resistance to artemisinins in multiple geographic locations, with increasing prevalence and regional spread over time. (Funded by the National Institutes of Health.).


Asunto(s)
Artemisininas , Resistencia a Medicamentos , Malaria , Parásitos , Proteínas Protozoarias , Animales , Humanos , Artemisininas/farmacología , Artemisininas/uso terapéutico , Benchmarking , Parásitos/efectos de los fármacos , Parásitos/genética , Uganda/epidemiología , Resistencia a Medicamentos/genética , Malaria/tratamiento farmacológico , Malaria/genética , Malaria/parasitología , Proteínas Protozoarias/genética
8.
Am J Trop Med Hyg ; 107(4_Suppl): 21-32, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36228916

RESUMEN

The Program for Resistance, Immunology, Surveillance, and Modeling of Malaria (PRISM) has been conducting malaria research in Uganda since 2010 to improve the understanding of the disease and measure the impact of population-level control interventions in the country. Here, we will summarize key research findings from a series of studies addressing routine health facility-based surveillance, comprehensive cohort studies, studies of the molecular epidemiology, and transmission of malaria, evaluation of antimalarial drug efficacy, and resistance across the country, and assessments of insecticide resistance. Among our key findings are the following. First, we found that in historically high transmission areas of Uganda, a combination of universal distribution of long-lasting insecticidal-treated nets (LLINs) and sustained indoor residual spraying (IRS) of insecticides lowered the malaria burden greatly, but marked resurgences occurred if IRS was discontinued. Second, submicroscopic infections are common and key drivers of malaria transmission, especially in school-age children (5-15 years). Third, markers of drug resistance have changed over time, with new concerning emergence of markers predicting resistance to artemisinin antimalarials. Fourth, insecticide resistance monitoring has demonstrated high levels of resistance to pyrethroids, appreciable impact of the synergist piperonyl butoxide to pyrethroid susceptibility, emerging resistance to carbamates, and complete susceptibility of malaria vectors to organophosphates, which could have important implications for vector control interventions. Overall, PRISM has yielded a wealth of information informing researchers and policy-makers on the malaria burden and opportunities for improved malaria control and eventual elimination in Uganda. Continued studies concerning all the types of surveillance discussed above are ongoing.


Asunto(s)
Antimaláricos , Artemisininas , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Piretrinas , Adolescente , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Carbamatos/farmacología , Niño , Preescolar , Humanos , Resistencia a los Insecticidas , Insecticidas/farmacología , Insecticidas/uso terapéutico , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria/prevención & control , Control de Mosquitos , Mosquitos Vectores , Organofosfatos/farmacología , Butóxido de Piperonilo/farmacología , Piretrinas/farmacología , Uganda/epidemiología
10.
Antimicrob Agents Chemother ; 66(1): e0116321, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34694871

RESUMEN

Research efforts to combat antimalarial drug resistance rely on quick, robust, and sensitive methods to genetically characterize Plasmodium falciparum parasites. We developed a single-nucleotide polymorphism (SNP)-based genotyping method that can assess 33 drug resistance-conferring SNPs in dhfr, dhps, pfmdr1, pfcrt, and k13 in nine PCRs, performed directly from P. falciparum cultures or infected blood. We also optimized multiplexed fragment analysis and gel electrophoresis-based microsatellite typing methods using a set of five markers that can distinguish 12 laboratory strains of diverse geographical and temporal origin. We demonstrate how these methods can be applied to screen for the multidrug-resistant KEL1/PLA1/PfPailin (KelPP) lineage that has been sweeping across the Greater Mekong Subregion, verify parasite in vitro SNP-editing, identify novel recombinant genetic cross progeny, or cluster strains to infer their geographical origins. Results were compared with Illumina-based whole-genome sequence analysis that provides the most detailed sequence information but is cost-prohibitive. These adaptable, simple, and inexpensive methods can be easily implemented into routine genotyping of P. falciparum parasites in both laboratory and field settings.


Asunto(s)
Antimaláricos , Malaria Falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Genotipo , Humanos , Malaria Falciparum/parasitología , Repeticiones de Microsatélite/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...