Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 14(8)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35893784

RESUMEN

Pharmaceutical and personal care industries require human representative models for testing to ensure the safety of their products. A major route of penetration into our body after substance exposure is via the skin. Our aim was to generate robust culture conditions for a next generation human skin-on-chip model containing neopapillae and to establish proof-of-concept testing with the sensitizer, cinnamaldehyde. Reconstructed human skin consisting of a stratified and differentiated epidermis on a fibroblast populated hydrogel containing neopapillae spheroids (RhS-NP), were cultured air-exposed and under dynamic flow for 10 days. The robustness of three independent experiments, each with up to 21 intra-experiment replicates, was investigated. The epidermis was seen to invaginate into the hydrogel towards the neopapille spheroids. Daily measurements of lactate dehydrogenase (LDH) and glucose levels within the culture medium demonstrated high viability and stable metabolic activity throughout the culture period in all three independent experiments and in the replicates within an experiment. Topical cinnamaldehyde exposure to RhS-NP resulted in dose-dependent cytotoxicity (increased LDH release) and elevated cytokine secretion of contact sensitizer specific IL-18, pro-inflammatory IL-1ß, inflammatory IL-23 and IFN-γ, as well as anti-inflammatory IL-10 and IL-12p70. This study demonstrates the robustness and feasibility of complex next generation skin models for investigating skin immunotoxicity.

2.
In Vitro Cell Dev Biol Anim ; 56(10): 847-858, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33170472

RESUMEN

Access to complex in vitro models that recapitulate the unique markers and cell-cell interactions of the hair follicle is rather limited. Creation of scalable, affordable, and relevant in vitro systems which can provide predictive screens of cosmetic ingredients and therapeutic actives for hair health would be highly valued. In this study, we explore the features of the microfollicle, a human hair follicle organoid model based on the spatio-temporally defined co-culture of primary cells. The microfollicle provides a 3D differentiation platform for outer root sheath keratinocytes, dermal papilla fibroblasts, and melanocytes, via epidermal-mesenchymal-neuroectodermal cross-talk. For assay applications, microfollicle cultures were adapted to 96-well plates suitable for medium-throughput testing up to 21 days, and characterized for their spatial and lineage markers. The microfollicles showed hair-specific keratin expression in both early and late stages of cultivation. The gene expression profile of microfollicles was also compared with human clinical biopsy samples in response to the benchmark hair-growth compound, minoxidil. The gene expression changes in microfollicles showed up to 75% overlap with the corresponding gene expression signature observed in the clinical study. Based on our results, the cultivation of the microfollicle appears to be a practical tool for generating testable insights for hair follicle development and offers a complex model for pre-clinical substance testing.


Asunto(s)
Folículo Piloso/citología , Modelos Biológicos , Biomarcadores/metabolismo , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Folículo Piloso/ultraestructura , Humanos , Recién Nacido , Queratinas/metabolismo , Masculino , Melanocitos/citología , Melanocitos/efectos de los fármacos , Minoxidil/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
J Tissue Eng Regen Med ; 14(6): 761-773, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32293116

RESUMEN

Application of reconstructed human Skin (RhS) is a promising approach for the treatment of extensive wounds and for drug efficacy and safety testing. However, incorporating appendages, such as hair follicles, into RhS still remains a challenge. The hair follicle plays a critical role in thermal regulation, dispersion of sweat and sebum, sensory and tactile functions, skin regeneration, and repigmentation. The aim of this study was to determine whether human neopapilla could be incorporated into RhS (differentiated epidermis on fibroblast and endothelial cell populated dermis) and whether the neopapillae maintain their inductive follicular properties in vitro. Neopapillae spheroids, constructed from expanded and self-aggregating dermal papilla cells, synthesized extracellular matrix typically found in follicular papillae. Compared with dermal fibroblasts, neopapillae showed increased expression of multiple genes (Wnt5a, Wnt10b, and LEF1) known to regulate hair development and also increased secretion of CXCL1, which is a strong keratinocyte chemoattractant. When neopapillae were incorporated into the dermis of RhS, they stimulated epidermal down-growth resulting in engulfment of the neopapillae sphere. Similar to the native hair follicle, the differentiated invaginating epidermis inner side was keratin 10 positive and the undifferentiated outer side keratin 10 negative. The outer side was keratin 15 positive confirming the undifferentiated nature of these keratinocytes aligning a newly formed collagen IV, laminin V positive basement membrane within the hydrogel. In conclusion, we describe a RhS model containing neopapillae with hair follicle-inductive properties. Importantly, epidermal invagination occurred to engulf the neopapillae, thus demonstrating in vitro the first steps towards hair follicle morphogenesis in RhS.


Asunto(s)
Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Folículo Piloso/metabolismo , Esferoides Celulares/metabolismo , Células Cultivadas , Células Endoteliales/citología , Fibroblastos/citología , Folículo Piloso/citología , Humanos , Masculino , Esferoides Celulares/citología
4.
Lab Chip ; 13(18): 3555-61, 2013 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-23674126

RESUMEN

Substantial progress has been achieved over the last few decades in the development of skin equivalents to model the skin as an organ. However, their static culture still limits the emulation of essential physiological properties crucial for toxicity testing and compound screening. Here, we describe a dynamically perfused chip-based bioreactor platform capable of applying variable mechanical shear stress and extending culture periods. This leads to improvements of culture conditions for integrated in vitro skin models, ex vivo skin organ cultures and biopsies of single hair follicular units.


Asunto(s)
Folículo Piloso/citología , Técnicas Analíticas Microfluídicas/instrumentación , Modelos Biológicos , Técnicas de Cultivo de Órganos/instrumentación , Piel/citología , Reactores Biológicos , Comunicación Celular , Colágeno Tipo V/metabolismo , Folículo Piloso/metabolismo , Humanos , Queratinas/metabolismo , Piel/metabolismo , Estrés Mecánico
5.
J Biotechnol ; 152(3): 108-12, 2011 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-21277344

RESUMEN

Across many tissues and organs, the ability to create an organoid, the smallest functional unit of an organ, in vitro is the key both to tissue engineering and preclinical testing regimes. The hair follicle is an organoid that has been much studied based on its ability to grow quickly and to regenerate after trauma. But hair follicle formation in vitro has been elusive. Replacing hair lost due to pattern baldness or more severe alopecia, including that induced by chemotherapy, remains a significant unmet medical need. By carefully analyzing and recapitulating the growth conditions of hair follicle formation, we recreated human hair follicles in tissue culture that were capable of producing hair. Our microfollicles contained all relevant cell types and their structure and orientation resembled in some ways excised hair follicle specimens from human skin. This finding offers a new window onto hair follicle development. Having a robust culture system for hair follicles is an important step towards improved hair regeneration as well as to an understanding of how marketed drugs or drug candidates, including cancer chemotherapy, will affect this important organ.


Asunto(s)
Folículo Piloso/crecimiento & desarrollo , Folículo Piloso/ultraestructura , Ingeniería de Tejidos/métodos , Epitelio/metabolismo , Folículo Piloso/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...