Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(6): e202316478, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38100251

RESUMEN

[Fe]-hydrogenase harbors the iron-guanylylpyridinol (FeGP) cofactor, in which the Fe(II) complex contains acyl-carbon, pyridinol-nitrogen, cysteine-thiolate and two CO as ligands. Irradiation with UV-A/blue light decomposes the FeGP cofactor to a 6-carboxymethyl-4-guanylyl-2-pyridone (GP) and other components. Previous in vitro biosynthesis experiments indicated that the acyl- and CO-ligands in the FeGP cofactor can scramble, but whether scrambling occurred during biosynthesis or photolysis was unclear. Here, we demonstrate that the [18 O1 -carboxy]-group of GP is incorporated into the FeGP cofactor by in vitro biosynthesis. MS/MS analysis of the 18 O-labeled FeGP cofactor revealed that the produced [18 O1 ]-acyl group is not exchanged with a CO ligand of the cofactor, indicating that the acyl and CO ligands are scrambled during photolysis rather than biosynthesis, which ruled out any biosynthesis mechanisms allowing acyl/CO ligands scrambling. Time-resolved infrared spectroscopy indicated that an acyl-Fe(CO)3 intermediate is formed during photolysis, in which scrambling of the CO and acyl ligands can occur. This finding also suggests that the light-excited FeGP cofactor has a higher affinity for external CO. These results contribute to our understanding of the biosynthesis and photosensitive properties of this unique H2 -activating natural complex.


Asunto(s)
Hidrogenasas , Proteínas Hierro-Azufre , Hidrogenasas/metabolismo , Ligandos , Espectrometría de Masas en Tándem , Fotólisis , Carbono , Proteínas Hierro-Azufre/química
2.
J Med Chem ; 66(17): 11761-11791, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37585683

RESUMEN

Carbapenem resistance mediated by metallo-ß-lactamases (MBL) such as New Delhi metallo-ß-lactamase-1 (NDM-1) has become a major factor threatening the efficacy of essential ß-lactam antibiotics. Starting from hit fragment dipicolinic acid (DPA), 8-hydroxy- and 8-sulfonamido-quinoline-2-carboxylic acids were developed as inhibitors of NDM-1 with highly improved inhibitory activity and binding affinity. The most active compounds formed reversibly inactive ternary protein-inhibitor complexes with two zinc ions as proven by native protein mass spectrometry and bio-layer interferometry. Modification of the NDM-1 structure with remarkable entropic gain was shown by isothermal titration calorimetry and NMR spectroscopy of isotopically labeled protein. The best compounds were potent inhibitors of NDM-1 and other representative MBL with no or little inhibition of human zinc-binding enzymes. These inhibitors significantly reduced the minimum inhibitory concentrations (MIC) of meropenem for multidrug-resistant bacteria recombinantly expressing blaNDM-1 as well as for several multidrug-resistant clinical strains at concentrations non-toxic to human cells.


Asunto(s)
Carbapenémicos , Quinolinas , Humanos , Carbapenémicos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Cinética , beta-Lactamasas/metabolismo , Pruebas de Sensibilidad Microbiana , Bacterias/metabolismo , Termodinámica , Zinc/química , Ácidos Carboxílicos , Inhibidores de beta-Lactamasas/química
3.
Chemistry ; 29(23): e202203860, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36722398

RESUMEN

A de novo designed class of peptide-based fluoropolymers composed of fluorinated aliphatic amino acids as main components is reported. Structural characterization provided insights into fluorine-induced alterations on ß-strand to α-helix transition upon an increase in SDS content and revealed the unique formation of PPII structures for trifluorinated fluoropeptides. A combination of circular dichroism, fluorescence-based leaking assays and surface enhanced infrared absorption spectroscopy served to examine the insertion and folding processes into unilamellar vesicles. While partitioning into lipid bilayers, the degree of fluorination conducts a decrease in α-helical content. Furthermore, this study comprises a report on the proteolytic stability of peptides exclusively built up by fluorinated amino acids and proved all sequences to be enzymatically degradable despite the degree of fluorination. Herein presented fluoropeptides as well as the distinctive properties of these artificial and polyfluorinated foldamers with enzyme-degradable features will play a crucial role in the future development of fluorinated peptide-based biomaterials.


Asunto(s)
Aminoácidos , Péptidos , Péptidos/química , Aminoácidos/química , Péptido Hidrolasas , Membrana Dobles de Lípidos/química , Proteolisis , Dicroismo Circular , Pliegue de Proteína
4.
Front Mol Biosci ; 9: 929285, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911953

RESUMEN

The translocon-unassisted folding process of transmembrane domains of the microbial rhodopsins sensory rhodopsin I (HsSRI) and II (HsSRII), channelrhodopsin II (CrChR2), and bacteriorhodopsin (HsBR) during cell-free expression has been investigated by Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS). Up to now, only a limited number of rhodopsins have been expressed and folded into the functional holoprotein in cell free expression systems, while other microbial rhodopsins fail to properly bind the chromophore all-trans retinal as indicated by the missing visible absorption. SEIRAS experiments suggest that all investigated rhodopsins lead to the production of polypeptides, which are co-translationally inserted into a solid-supported lipid bilayer during the first hour after the in-vitro expression is initiated. Secondary structure analysis of the IR spectra revealed that the polypeptides form a comparable amount of α-helical structure during the initial phase of insertion into the lipid bilayer. As the process progressed (>1 h), only HsBR exhibited a further increase and association of α-helices to form a compact tertiary structure, while the helical contents of the other rhodopsins stagnated. This result suggests that the molecular reason for the unsuccessful cell-free expression of the two sensory rhodopsins and of CrChR2 is not due to the translation process, but rather to the folding process during the post-translational period. Taking our previous observation into account that HsBR fails to form a tertiary structure in the absence of its retinal, we infer that the chromophore retinal is an integral component of the compaction of the polypeptide into its tertiary structure and the formation of a fully functional protein.

5.
Biochim Biophys Acta Biomembr ; 1864(6): 183873, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104491

RESUMEN

The pH low insertion peptide (pHLIP) is a pH-sensitive cell penetrating peptide that transforms from an unstructured coil on the membrane surface at pH > 7, to a transmembrane (TM) α-helix at pH < 5. By exploiting this unique property, pHLIP attracts interest as a potential tool for drug delivery and visualisation of acidic tissues produced by various maladies such as cancer, inflammation, hypoxia etc. Even though the structures of initial and end states of pHLIP insertion have been widely accepted, the intermediate structures in between these two states are less clear. Here, we have applied in situ Surface-Enhanced Infrared Absorption spectroscopy to examine the pH-induced insertion and folding processes of pHLIP into a solid-supported lipid bilayer. We show that formation of partially helical structure already takes place at pH only slightly below 7.0, but with the helical axis parallel to the membrane surface. The peptide starts to reorientate its helix from horizontal to vertical direction, accompanied by the insertion into the TM region at pH < 6.2. Further insertion into the TM region of the peptide results in an increase of inherent α-helical structure and complete secondary structure formation at pH 5.3. Analysis of the changes of the carboxylate vibrational bands upon pH titration shows two distinctive groups of aspartates and glutamates with pKa values of 4.5 and 6.3, respectively. Comparison to the amide bands of the peptide backbone suggests that the latter Asp/Glu groups are directly involved in the conformational changes of pHLIP in the respective intermediate states.


Asunto(s)
Péptidos de Penetración Celular , Membrana Dobles de Lípidos , Secuencia de Aminoácidos , Concentración de Iones de Hidrógeno , Membrana Dobles de Lípidos/química , Conformación Proteica en Hélice alfa
6.
Langmuir ; 37(47): 13846-13858, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34787431

RESUMEN

The interplay of fluorination and structure of alkane self-assembled monolayers and how these affect hydrophobicity are explored via molecular dynamics simulations, contact angle goniometry, and surface-enhanced infrared absorption spectroscopy. Wetting coefficients are found to grow linearly in the monolayer density for both alkane and perfluoroalkane monolayers. The larger contact angles of monolayers of perfluorinated alkanes are shown to be primarily caused by their larger molecular volume, which leads to a larger nearest-neighbor grafting distance and smaller tilt angle. Increasing the Lennard-Jones force cutoff in simulations is found to increase hydrophilicity. Specifically, wetting coefficients scale like the inverse square of the cutoff, and when extrapolated to the infinite cutoff limit, they yield contact angles that compare favorably to experimental values. Nanoscale roughness is also found to reliably increase monolayer hydrophobicity, mostly via the reduction of the entropic part of the work of adhesion. Analysis of depletion lengths shows that droplets on nanorough surfaces partially penetrate the surface, intermediate between Wenzel and Cassie-Baxter states.

7.
Angew Chem Int Ed Engl ; 60(24): 13350-13357, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33635597

RESUMEN

The reconstitution of [Mn]-hydrogenases using a series of MnI complexes is described. These complexes are designed to have an internal base or pro-base that may participate in metal-ligand cooperative catalysis or have no internal base or pro-base. Only MnI complexes with an internal base or pro-base are active for H2 activation; only [Mn]-hydrogenases incorporating such complexes are active for hydrogenase reactions. These results confirm the essential role of metal-ligand cooperation for H2 activation by the MnI complexes alone and by [Mn]-hydrogenases. Owing to the nature and position of the internal base or pro-base, the mode of metal-ligand cooperation in two active [Mn]-hydrogenases is different from that of the native [Fe]-hydrogenase. One [Mn]-hydrogenase has the highest specific activity of semi-synthetic [Mn]- and [Fe]-hydrogenases. This work demonstrates reconstitution of active artificial hydrogenases using synthetic complexes differing greatly from the native active site.


Asunto(s)
Complejos de Coordinación/química , Hidrogenasas/química , Ligandos , Manganeso/química , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Catálisis , Dominio Catalítico , Hidrógeno/química , Hidrogenasas/metabolismo , Conformación Molecular
8.
Front Mol Biosci ; 8: 782688, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35252344

RESUMEN

Direct optical activation of microbial rhodopsins in deep biological tissue suffers from ineffective light delivery because visible light is strongly scattered and absorbed. NIR light has deeper tissue penetration, but NIR-activation requires a transducer that converts NIR light into visible light in proximity to proteins of interest. Lanthanide-doped upconversion nanoparticles (UCNPs) are ideal transducer as they absorb near-infrared (NIR) light and emit visible light. Therefore, UCNP-assisted excitation of microbial rhodopsins with NIR light has been intensively studied by electrophysiology technique. While electrophysiology is a powerful method to test the functional performance of microbial rhodopsins, conformational changes associated with the NIR light illumination in the presence of UCNPs remain poorly understood. Since UCNPs have generally multiple emission peaks at different wavelengths, it is important to reveal if UCNP-generated visible light induces similar structural changes of microbial rhodopsins as conventional visible light illumination does. Here, we synthesize the lanthanide-doped UCNPs that convert NIR light to blue light. Using these NIR-to-blue UCNPs, we monitor the NIR-triggered conformational changes in sensory rhodopsin II from Natronomonas pharaonis (NpSRII), blue light-sensitive microbial rhodospsin, by FTIR spectroscopy. FTIR difference spectrum of NpSRII was recorded under two different excitation conditions: (ⅰ) with conventional blue light, (ⅱ) with UCNP-generated blue light upon NIR excitation. Both spectra display similar spectral features characteristic of the long-lived M photointermediate state during the photocycle of NpSRII. This study demonstrates that NIR-activation of NpSRII mediated by UCNPs takes place in a similar way to direct blue light activation of NpSRII.

9.
Nat Chem ; 11(7): 669-675, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31110253

RESUMEN

Nature carefully selects specific metal ions for incorporation into the enzymes that catalyse the chemical reactions necessary for life. Hydrogenases, enzymes that activate molecular H2, exclusively utilize Ni and Fe in [NiFe]-, [FeFe]- and [Fe]-hydrogeanses. However, other transition metals are known to activate or catalyse the production of hydrogen in synthetic systems. Here, we report the development of a biomimetic model complex of [Fe]-hydrogenase that incorporates a Mn, as opposed to a Fe, metal centre. This Mn complex is able to heterolytically cleave H2 as well as catalyse hydrogenation reactions. The incorporation of the model into an apoenzyme of [Fe]-hydrogenase results in a [Mn]-hydrogenase with an enhanced occupancy-normalized activity over an analogous semi-synthetic [Fe]-hydrogenase. These findings demonstrate a non-native metal hydrogenase that shows catalytic functionality and that hydrogenases based on a manganese active site are viable.


Asunto(s)
Materiales Biomiméticos/química , Complejos de Coordinación/química , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Manganeso/química , Materiales Biomiméticos/síntesis química , Catálisis , Dominio Catalítico , Complejos de Coordinación/síntesis química , Teoría Funcional de la Densidad , Hidrógeno/química , Hidrogenasas/genética , Hidrogenación , Proteínas Hierro-Azufre/genética , Methanocaldococcus/enzimología , Modelos Químicos , Mutación
10.
Angew Chem Int Ed Engl ; 58(11): 3506-3510, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30600878

RESUMEN

[Fe]-hydrogenase (Hmd) catalyzes the reversible hydrogenation of methenyl-tetrahydromethanopterin (methenyl-H4 MPT+ ) with H2 . H4 MPT is a C1-carrier of methanogenic archaea. One bacterial genus, Desulfurobacterium, contains putative genes for the Hmd paralog, termed HmdII, and the HcgA-G proteins. The latter are required for the biosynthesis of the prosthetic group of Hmd, the iron-guanylylpyridinol (FeGP) cofactor. This finding is intriguing because Hmd and HmdII strictly use H4 MPT derivatives that are absent in most bacteria. We identified the presence of the FeGP cofactor in D. thermolithotrophum. The bacterial HmdII reconstituted with the FeGP cofactor catalyzed the hydrogenation of derivatives of tetrahydrofolate, the bacterial C1-carrier, albeit with low enzymatic activities. The crystal structures show how Hmd recognizes tetrahydrofolate derivatives. These findings have an impact on future biotechnology by identifying a bacterial Hmd paralog.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Tetrahidrofolatos/química , Biocatálisis , Cristalización , Guanina/análogos & derivados , Guanina/biosíntesis , Hidrogenación , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Piridinas
11.
Proc Natl Acad Sci U S A ; 115(52): E12172-E12181, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30541892

RESUMEN

The pentameric ligand-gated ion channel (pLGIC) from Gloeobacter violaceus (GLIC) has provided insightful structure-function views on the permeation process and the allosteric regulation of the pLGICs family. However, GLIC is activated by pH instead of a neurotransmitter and a clear picture for the gating transition driven by protons is still lacking. We used an electrostatics-based (finite difference Poisson-Boltzmann/Debye-Hückel) method to predict the acidities of all aspartic and glutamic residues in GLIC, both in its active and closed-channel states. Those residues with a predicted pKa close to the experimental pH50 were individually replaced by alanine and the resulting variant receptors were titrated by ATR/FTIR spectroscopy. E35, located in front of loop F far away from the orthosteric site, appears as the key proton sensor with a measured individual pKa at 5.8. In the GLIC open conformation, E35 is connected through a water-mediated hydrogen-bond network first to the highly conserved electrostatic triad R192-D122-D32 and then to Y197-Y119-K248, both located at the extracellular domain-transmembrane domain interface. The second triad controls a cluster of hydrophobic side chains from the M2-M3 loop that is remodeled during the gating transition. We solved 12 crystal structures of GLIC mutants, 6 of them being trapped in an agonist-bound but nonconductive conformation. Combined with previous data, this reveals two branches of a continuous network originating from E35 that reach, independently, the middle transmembrane region of two adjacent subunits. We conclude that GLIC's gating proceeds by making use of loop F, already known as an allosteric site in other pLGICs, instead of the classic orthosteric site.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/metabolismo , Proteínas Bacterianas/genética , Cianobacterias/química , Cianobacterias/genética , Cinética , Canales Iónicos Activados por Ligandos/genética , Modelos Moleculares , Dominios Proteicos , Protones , Electricidad Estática
12.
ACS Sens ; 3(5): 984-991, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29741356

RESUMEN

Plasmonic surfaces have emerged as a powerful platform for biomolecular sensing applications and can be designed to optimize the plasmonic resonance for probing molecular vibrations at utmost sensitivity. Here, we present a facile procedure to generate metallic microdisc antenna arrays that are employed in surface-enhanced infrared absorption (SEIRA) spectroscopy of biomolecules. Transmission electron microscopy (TEM) grids are used as shadow mask deployed during physical vapor deposition of gold. The resulting disc-shaped antennas exhibit enhancement factors of the vibrational bands of 4 × 104 giving rise to a detection limit <1 femtomol (10-15 mol) of molecules. Surface-bound monolayers of 4-mercaptobenzoic acid show polyelectrolyte behavior when titrated with cations in the aqueous medium. Conformational rigidity of the self-assembled monolayer is validated by density functional theory calculations. The membrane protein sensory rhodopsin II is tethered to the disc antenna arrays and is fully functional as inferred from the light-induced SEIRA difference spectra. As an advance to previous studies, the accessible frequency range is improved and extended into the fingerprint region.


Asunto(s)
Proteínas de la Membrana/química , Espectroscopía Infrarroja por Transformada de Fourier/instrumentación , Benzoatos/química , Técnicas Biosensibles/instrumentación , Electrólitos/química , Ingeniería Genética , Oro/química , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/genética , Microscopía Electrónica de Rastreo , Rodopsina/química , Compuestos de Sulfhidrilo/química
13.
Angew Chem Int Ed Engl ; 57(18): 4917-4920, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29462510

RESUMEN

Mono-iron hydrogenase ([Fe]-hydrogenase) reversibly catalyzes the transfer of a hydride ion from H2 to methenyltetrahydromethanopterin (methenyl-H4 MPT+ ) to form methylene-H4 MPT. Its iron guanylylpyridinol (FeGP) cofactor plays a key role in H2 activation. Evidence is presented for O2 sensitivity of [Fe]-hydrogenase under turnover conditions in the presence of reducing substrates, methylene-H4 MPT or methenyl-H4 MPT+ /H2 . Only then, H2 O2 is generated, which decomposes the FeGP cofactor; as demonstrated by spectroscopic analyses and the crystal structure of the deactivated enzyme. O2 reduction to H2 O2 requires a reductant, which can be a catalytic intermediate transiently formed during the [Fe]-hydrogenase reaction. The most probable candidate is an iron hydride species; its presence has already been predicted by theoretical studies of the catalytic reaction. The findings support predictions because the same type of reduction reaction is described for ruthenium hydride complexes that hydrogenate polar compounds.


Asunto(s)
Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Oxígeno/metabolismo , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Estructura Molecular , Oxidación-Reducción , Oxígeno/química
14.
Sci Rep ; 7(1): 8021, 2017 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-28808343

RESUMEN

Correctly folded membrane proteins underlie a plethora of cellular processes, but little is known about how they fold. Knowledge of folding mechanisms centres on reversible folding of chemically denatured membrane proteins. However, this cannot replicate the unidirectional elongation of the protein chain during co-translational folding in the cell, where insertion is assisted by translocase apparatus. We show that a lipid membrane (devoid of translocase components) is sufficient for successful co-translational folding of two bacterial α-helical membrane proteins, DsbB and GlpG. Folding is spontaneous, thermodynamically driven, and the yield depends on lipid composition. Time-resolving structure formation during co-translational folding revealed different secondary and tertiary structure folding pathways for GlpG and DsbB that correlated with membrane interfacial and biological transmembrane amino acid hydrophobicity scales. Attempts to refold DsbB and GlpG from chemically denatured states into lipid membranes resulted in extensive aggregation. Co-translational insertion and folding is thus spontaneous and minimises aggregation whilst maximising correct folding.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Endopeptidasas/química , Proteínas de Escherichia coli/química , Proteínas de la Membrana/química , Pliegue de Proteína , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Endopeptidasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Simulación de Dinámica Molecular
15.
PLoS One ; 11(3): e0151051, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26978519

RESUMEN

Proper insertion, folding and assembly of functional proteins in biological membranes are key processes to warrant activity of a living cell. Here, we present a novel approach to trace folding and insertion of a nascent membrane protein leaving the ribosome and penetrating the bilayer. Surface Enhanced IR Absorption Spectroscopy selectively monitored insertion and folding of membrane proteins during cell-free expression in a label-free and non-invasive manner. Protein synthesis was performed in an optical cell containing a prism covered with a thin gold film with nanodiscs on top, providing an artificial lipid bilayer for folding. In a pilot experiment, the folding pathway of bacteriorhodopsin via various secondary and tertiary structures was visualized. Thus, a methodology is established with which the folding reaction of other more complex membrane proteins can be observed during protein biosynthesis (in situ and in operando) at molecular resolution.


Asunto(s)
Proteínas de la Membrana/química , Pliegue de Proteína , Sistema Libre de Células , Espectrofotometría Ultravioleta
16.
Nat Chem ; 7(12): 995-1002, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26587715

RESUMEN

[Fe]-Hydrogenase catalyses the reversible hydrogenation of a methenyltetrahydromethanopterin substrate, which is an intermediate step during the methanogenesis from CO2 and H2. The active site contains an iron-guanylylpyridinol cofactor, in which Fe(2+) is coordinated by two CO ligands, as well as an acyl carbon atom and a pyridinyl nitrogen atom from a 3,4,5,6-substituted 2-pyridinol ligand. However, the mechanism of H2 activation by [Fe]-hydrogenase is unclear. Here we report the reconstitution of [Fe]-hydrogenase from an apoenzyme using two FeGP cofactor mimics to create semisynthetic enzymes. The small-molecule mimics reproduce the ligand environment of the active site, but are inactive towards H2 binding and activation on their own. We show that reconstituting the enzyme using a mimic that contains a 2-hydroxypyridine group restores activity, whereas an analogous enzyme with a 2-methoxypyridine complex was essentially inactive. These findings, together with density functional theory computations, support a mechanism in which the 2-hydroxy group is deprotonated before it serves as an internal base for heterolytic H2 cleavage.


Asunto(s)
Coenzimas/química , Hidrogenasas/química , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Pterinas/química , Piridinas/química , Dominio Catalítico , Coenzimas/metabolismo , Hidrógeno/química , Hidrógeno/metabolismo , Hidrogenación , Modelos Moleculares , Estructura Molecular , Pterinas/metabolismo , Piridinas/metabolismo , Termodinámica
17.
Chembiochem ; 16(13): 1861-1865, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26136368

RESUMEN

[Fe]-Hydrogenase (Hmd) catalyzes reversible hydride transfer from H2 . It harbors an iron-guanylylpyridinol as a cofactor with an FeII that is ligated to one thiolate, two COs, one acyl-C, one pyridinol-N, and solvent. Here, we report that CuI and H2 O2 inactivate Hmd (half-maximal rates at 1 µM CuI and 20 µM H2 O2 ) and that FeII inhibits the enzyme with very high affinity (Ki =40 nM). Infrared and EPR studies together with competitive inhibition studies with isocyanide indicated that CuI exerts its inhibitory effect most probably by binding to the active site iron-thiolate ligand. Using the same methods, it was found that H2 O2 binds to the active-site iron at the solvent-binding site and oxidizes FeII to FeIII . Also it was shown that FeII reversibly binds away from the active site iron, with binding being competitive to the organic hydride acceptor; this inhibition is specific for FeII and is reminiscent of that for the [FeFe]-hydrogenase second iron, which specifically interacts with H2 .

18.
FEBS J ; 282(17): 3412-23, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26094576

RESUMEN

UNLABELLED: [Fe]-hydrogenase (Hmd), an enzyme of the methanogenic energy metabolism, harbors an iron-guanylylpyridinol (FeGP) cofactor used for H2 cleavage. The generated hydride is transferred to methenyl-tetrahydromethanopterin (methenyl-H4MPT(+)). Most hydrogenotrophic methanogens contain the hmd-related genes hmdII and hmdIII. Their function is still elusive. We were able to reconstitute the HmdII holoenzyme of Methanocaldococcus jannaschii with recombinantly produced apoenzyme and the FeGP cofactor, which is a prerequisite for in vitro functional analysis. Infrared spectroscopic and X-ray structural data clearly indicated binding of the FeGP cofactor. Methylene-H4MPT binding was detectable in the significantly altered infrared spectra of the HmdII holoenzyme and in the HmdII apoenzyme-methylene-H4 MPT complex structure. The related binding mode of the FeGP cofactor and methenyl-H4MPT(+) compared with Hmd and their multiple contacts to the polypeptide highly suggest a biological role in HmdII. However, holo-HmdII did not catalyze the Hmd reaction, not even in a single turnover process, as demonstrated by kinetic measurements. The found inactivity can be rationalized by an increased contact area between the C- and N-terminal folding units in HmdII compared with in Hmd, which impairs the catalytically necessary open-to-close transition, and by an exchange of a crucial histidine to a tyrosine. Mainly based on the presented data, a function of HmdII as Hmd isoenzyme, H2 sensor, FeGP-cofactor storage protein and scaffold protein for FeGP-cofactor biosynthesis could be excluded. Inspired by the recently found binding of HmdII to aminoacyl-tRNA synthetases and tRNA, we tentatively consider HmdII as a regulatory protein for protein synthesis that senses the intracellular methylene-H4 MPT concentration. DATABASE: Structural data are available in the Protein Data Bank under the accession numbers 4YT8; 4YT2; 4YT4 and 4YT5.


Asunto(s)
Apoenzimas/química , Proteínas Arqueales/química , Coenzimas/química , Holoenzimas/química , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Methanocaldococcus/química , Piridinas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sitios de Unión , Coenzimas/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Holoenzimas/genética , Holoenzimas/metabolismo , Hidrogenasas/genética , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Cinética , Methanocaldococcus/enzimología , Modelos Moleculares , Unión Proteica , Biosíntesis de Proteínas/genética , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Pterinas/química , Pterinas/metabolismo , Piridinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometría Infrarroja
19.
PLoS One ; 9(7): e103307, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25058114

RESUMEN

Aureochrome 1 from Vaucheria frigida is a recently identified blue-light receptor that acts as a transcription factor. The protein comprises a photosensitive light-, oxygen- and voltage-sensitive (LOV) domain and a basic zipper (bZIP) domain that binds DNA rendering aureochrome 1 a prospective optogenetic tool. Here, we studied the photoreaction of full-length aureochrome 1 by molecular spectroscopy. The kinetics of the decay of the red-shifted triplet state and the blue-shifted signaling state were determined by time-resolved UV/Vis spectroscopy. It is shown that the presence of the bZIP domain further prolongs the lifetime of the LOV390 signaling state in comparison to the isolated LOV domain whereas bound DNA does not influence the photocycle kinetics. The light-dark Fourier transform infrared (FTIR) difference spectrum shows the characteristic features of the flavin mononucleotide chromophore except that the S-H stretching vibration of cysteine 254, which is involved in the formation of the thio-adduct state, is significantly shifted to lower frequencies compared to other LOV domains. The presence of the target DNA influences the light-induced FTIR difference spectrum of aureochrome 1. Vibrational bands that can be assigned to arginine and lysine side chains as well to the phosphate backbone, indicate crucial changes in interactions between transcription factor and DNA.


Asunto(s)
Proteínas Algáceas/química , Criptocromos/química , ADN/metabolismo , Factores de Transcripción/química , Proteínas Algáceas/metabolismo , Sitios de Unión , Criptocromos/metabolismo , Cinética , Modelos Moleculares , Estructura Secundaria de Proteína , Espectroscopía Infrarroja por Transformada de Fourier , Homología Estructural de Proteína , Factores de Transcripción/metabolismo
20.
Biochim Biophys Acta ; 1828(10): 2283-93, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23816441

RESUMEN

Surface-enhanced infrared absorption spectroscopy (SEIRAS) represents a variation of conventional infrared spectroscopy and exploits the signal enhancement exerted by the plasmon resonance of nano-structured metal thin films. The surface enhancement decays in about 10nm with the distance from the surface and is, thus, perfectly suited to selectively probe monolayers of biomembranes. Peculiar to membrane proteins is their vectorial functionality, the probing of which requires proper orientation within the membrane. To this end, the metal surface used in SEIRAS is chemically modified to generate an oriented membrane protein film. Monolayers of uniformly oriented membrane proteins are formed by tethering His-tagged proteins to a nickel nitrilo-triacetic acid (Ni-NTA) modified gold surface and SEIRAS commands molecular sensitivity to probe each step of surface modification. The solid surface used as plasmonic substrate for SEIRAS, can also be employed as an electrode to investigate systems where electron transfer reactions are relevant, like e.g. cytochrome c oxidase or plant-type photosystems. Furthermore, the interaction of these membrane proteins with water-soluble proteins, like cytochrome c or hydrogenase, is studied on the molecular level by SEIRAS. The impact of the membrane potential on protein functionality is verified by monitoring light-dark difference spectra of a monolayer of sensory rhodopsin (SRII) at different applied potentials. It is demonstrated that the interpretations of all of these experiments critically depend on the orientation of the solid-supported membrane protein. Finally, future directions of SEIRAS including cellular systems are discussed. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.


Asunto(s)
Proteínas de la Membrana/química , Espectrofotometría Infrarroja/métodos , Proteínas de la Membrana/fisiología , Proteínas de Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...