Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(18): 23209-23219, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38661059

RESUMEN

Metallic zinc anodes in aqueous zinc-ion batteries (ZIBs) suffer from dendritic growth, low Coulombic efficiency, and high polarization during cycling. To mitigate these challenges, current collectors based on three-dimensional (3D) commercial copper foam (CCuF) are generally preferred. However, their utilization is constrained by their thickness, low electroactive surface area, and increased manufacturing expenses. In this study, the synthesis of cost-effective current collectors with exceptionally large surface areas designed for ZIBs that can be cycled hundreds of times is reported. A zinc-coated CuF anode (Zn/CuF) was prepared with a 3D porous CuF current collector produced by the dynamic hydrogen bubble template (DHBT) method. Electrochemically generated copper foam could be obtained within seconds while offering a thickness as low as 30-40 µm (CuF5 achieved a thickness of ∼38 µm in 5 s) via the DHBT method. The excellent electrical conductivity and open pore structure of the 3D porous copper scaffold ensured the uniform deposition/stripping of Zn during cycling. During the 500 h Zn deposition/stripping process, the as-synthesized CuF5 current collector offered fast electrochemical kinetics and low polarization as well as a relatively high average Coulombic efficiency of 99% (at a current density of 5 mA cm-2 and a capacity of 1 mAh cm-2). Furthermore, the symmetric cell exhibited low voltage polarization and a stable voltage profile for 1000 h at a current density of 0.1 mA cm-2. In addition, full cells containing the Zn/CuF anode coupled with an as-synthesized α-MnO2 nanoneedle cathode in aqueous electrolyte were also prepared. Capacities of 266 mAh g-1 at 0.1 A g-1 and 94 mAh g-1 at 2 A g-1 were achieved after 200 charge/discharge cycles with a stable Coulombic efficiency value close to 99.9%.

2.
Nanomicro Lett ; 15(1): 215, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737445

RESUMEN

Fast-charging lithium-ion batteries are highly required, especially in reducing the mileage anxiety of the widespread electric vehicles. One of the biggest bottlenecks lies in the sluggish kinetics of the Li+ intercalation into the graphite anode; slow intercalation will lead to lithium metal plating, severe side reactions, and safety concerns. The premise to solve these problems is to fully understand the reaction pathways and rate-determining steps of graphite during fast Li+ intercalation. Herein, we compare the Li+ diffusion through the graphite particle, interface, and electrode, uncover the structure of the lithiated graphite at high current densities, and correlate them with the reaction kinetics and electrochemical performances. It is found that the rate-determining steps are highly dependent on the particle size, interphase property, and electrode configuration. Insufficient Li+ diffusion leads to high polarization, incomplete intercalation, and the coexistence of several staging structures. Interfacial Li+ diffusion and electrode transportation are the main rate-determining steps if the particle size is less than 10 µm. The former is highly dependent on the electrolyte chemistry and can be enhanced by constructing a fluorinated interphase. Our findings enrich the understanding of the graphite structural evolution during rapid Li+ intercalation, decipher the bottleneck for the sluggish reaction kinetics, and provide strategic guidelines to boost the fast-charging performance of graphite anode.

3.
ACS Appl Mater Interfaces ; 14(1): 891-899, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34967603

RESUMEN

In this study, we report a new design paradigm for an electrode preparation method that drastically improves the fast-charging capabilities of a graphite (Gt) anode by controlling the crystallographic orientation. The crystallographic orientation of the Gt electrode is achieved under a dynamic magnetic field using commercially available neodymium magnets. When the slurry of the Gt electrode is tape casted using the conventional method with no magnetic field, the crystallographic orientation is dominated with (002) planes along with other random planes. However, once the slurry of the Gt electrode is casted and dried under a magnetic field, the Gt particles tend to orient themselves along the (100), (101), and (110) planes which are all aligned vertically to the current collector. This striking difference allows the oriented Gt electrode to reach 80% state of the charge in only 50 min at 1C charge rate, whereas the randomly distributed Gt electrode reaches 80% state of the charge in 138 min at 1C charge rate using a constant current-constant voltage charging protocol. The outstanding electrochemical performance of the oriented Gt electrodes was characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, electrochemical cycling, and electrochemical impedance spectroscopy techniques.

4.
J Electrochem Soc ; 162(7): A1236-A1245, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26478598

RESUMEN

We report the results of a comprehensive study of the relationship between electrochemical performance in Li cells and chemical composition of a series of Li rich layered metal oxides of the general formula xLi2MnO3 · (1-x)LiMn0.33Ni0.33Co0.33O2 in which x = 0,1, 0.2, 0,3, 0.5 or 0.7, synthesized using the same method. In order to identify the cathode material having the optimum Li cell performance we first varied the ratio between Li2MnO3 and LiMO2 segments of the composite oxides while maintaining the same metal ratio residing within their LiMO2 portions. The materials with the overall composition 0.5Li2MnO3 · 0.5LiMO2 containing 0.5 mole of Li2MnO3 per mole of the composite metal oxide were found to be the optimum in terms of electrochemical performance. The electrochemical properties of these materials were further tuned by changing the relative amounts of Mn, Ni and Co in the LiMO2 segment to produce xLi2MnO3 · (1-x)LiMn0.50Ni0.35Co0.15O2 with enhanced capacities and rate capabilities. The rate capability of the lithium rich compound in which x = 0.3 was further increased by preparing electrodes with about 2 weight-percent multiwall carbon nanotube in the electrode. Lithium cells prepared with such electrodes were cycled at the 4C rate with little fade in capacity for over one hundred cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...