Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38826450

RESUMEN

Fibrosis drives end-organ damage in many diseases. However, clinical trials targeting individual upstream activators of fibroblasts, such as TGFß, have largely failed. Here, we target the leukemia inhibitory factor receptor (LIFR) as a "master amplifier" of multiple upstream activators of lung fibroblasts. In idiopathic pulmonary fibrosis (IPF), the most common fibrotic lung disease, we found that lung myofibroblasts had high LIF expression. Further, TGFß1, one of the key drivers of fibrosis, upregulated LIF expression in IPF fibroblasts. In vitro anti-LIFR antibody blocking on human IPF lung fibroblasts reduced induction of profibrotic genes downstream of TGFß1, IL-4 and IL-13. Further, siRNA silencing of LIFR in IPF precision cut lung slices reduced expression of fibrotic proteins. Together, we find that LIFR drives an autocrine positive feedback loop that amplifies and sustains pathogenic activation of IPF fibroblasts downstream of multiple external stimuli, implicating LIFR as a therapeutic target in fibrosis. Significance Statement: Fibroblasts have a central role in the pathogenesis of fibrotic diseases. However, due to in part to multiple profibrotic stimuli, targeting a single activator of fibroblasts, like TGFß, has not yielded successful clinical treatments. We hypothesized that a more effective therapeutic strategy is identifying a downstream "master amplifier" of a range of upstream profibrotic stimuli. This study identifies the leukemia inhibitory factor receptor (LIFR) on fibrotic lung fibroblasts amplifies multiple profibrotic stimuli, such as IL-13 and TGFß. Blocking LIFR reduced fibrosis in ex vivo lung tissue from patients with idiopathic pulmonary fibrosis (IPF). LIFR, acting as a master amplifier downstream of fibroblast activation, offers an alternative therapeutic strategy for fibrotic diseases.

2.
Am J Respir Crit Care Med ; 208(11): 1177-1195, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37756440

RESUMEN

Rationale: Despite the importance of inflammation in chronic obstructive pulmonary disease (COPD), the immune cell landscape in the lung tissue of patients with mild-moderate disease has not been well characterized at the single-cell and molecular level. Objectives: To define the immune cell landscape in lung tissue from patients with mild-moderate COPD at single-cell resolution. Methods: We performed single-cell transcriptomic, proteomic, and T-cell receptor repertoire analyses on lung tissue from patients with mild-moderate COPD (n = 5, Global Initiative for Chronic Obstructive Lung Disease I or II), emphysema without airflow obstruction (n = 5), end-stage COPD (n = 2), control (n = 6), or donors (n = 4). We validated in an independent patient cohort (N = 929) and integrated with the Hhip+/- murine model of COPD. Measurements and Main Results: Mild-moderate COPD lungs have increased abundance of two CD8+ T cell subpopulations: cytotoxic KLRG1+TIGIT+CX3CR1+ TEMRA (T effector memory CD45RA+) cells, and DNAM-1+CCR5+ T resident memory (TRM) cells. These CD8+ T cells interact with myeloid and alveolar type II cells via IFNG and have hyperexpanded T-cell receptor clonotypes. In an independent cohort, the CD8+KLRG1+ TEMRA cells are increased in mild-moderate COPD lung compared with control or end-stage COPD lung. Human CD8+KLRG1+ TEMRA cells are similar to CD8+ T cells driving inflammation in an aging-related murine model of COPD. Conclusions: CD8+ TEMRA cells are increased in mild-moderate COPD lung and may contribute to inflammation that precedes severe disease. Further study of these CD8+ T cells may have therapeutic implications for preventing severe COPD.


Asunto(s)
Linfocitos T CD8-positivos , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Animales , Ratones , Modelos Animales de Enfermedad , Proteómica , Pulmón/metabolismo , Inflamación , Receptores de Antígenos de Linfocitos T
3.
Med ; 4(7): 432-456.e6, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37257452

RESUMEN

BACKGROUND: Most patients hospitalized after cardiac arrest (CA) die because of neurological injury. The systemic inflammatory response after CA is associated with neurological injury and mortality but remains poorly defined. METHODS: We determine the innate immune network induced by clinical CA at single-cell resolution. FINDINGS: Immune cell states diverge as early as 6 h post-CA between patients with good or poor neurological outcomes 30 days after CA. Nectin-2+ monocyte and Tim-3+ natural killer (NK) cell subpopulations are associated with poor outcomes, and interactome analysis highlights their crosstalk via cytokines and immune checkpoints. Ex vivo studies of peripheral blood cells from CA patients demonstrate that immune checkpoints are a compensatory mechanism against inflammation after CA. Interferon γ (IFNγ)/interleukin-10 (IL-10) induced Nectin-2 on monocytes; in a negative feedback loop, Nectin-2 suppresses IFNγ production by NK cells. CONCLUSIONS: The initial hours after CA may represent a window for therapeutic intervention in the resolution of inflammation via immune checkpoints. FUNDING: This work was supported by funding from the American Heart Association, Brigham and Women's Hospital Department of Medicine, the Evergreen Innovation Fund, and the National Institutes of Health.


Asunto(s)
Citocinas , Transcriptoma , Estados Unidos , Humanos , Femenino , Citocinas/farmacología , Nectinas/genética , Células Asesinas Naturales , Inflamación
4.
Med ; 3(7): 481-518.e14, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35649411

RESUMEN

BACKGROUND: Pro-inflammatory fibroblasts are critical for pathogenesis in rheumatoid arthritis, inflammatory bowel disease, interstitial lung disease, and Sjögren's syndrome and represent a novel therapeutic target for chronic inflammatory disease. However, the heterogeneity of fibroblast phenotypes, exacerbated by the lack of a common cross-tissue taxonomy, has limited our understanding of which pathways are shared by multiple diseases. METHODS: We profiled fibroblasts derived from inflamed and non-inflamed synovium, intestine, lungs, and salivary glands from affected individuals with single-cell RNA sequencing. We integrated all fibroblasts into a multi-tissue atlas to characterize shared and tissue-specific phenotypes. FINDINGS: Two shared clusters, CXCL10+CCL19+ immune-interacting and SPARC+COL3A1+ vascular-interacting fibroblasts, were expanded in all inflamed tissues and mapped to dermal analogs in a public atopic dermatitis atlas. We confirmed these human pro-inflammatory fibroblasts in animal models of lung, joint, and intestinal inflammation. CONCLUSIONS: This work represents a thorough investigation into fibroblasts across organ systems, individual donors, and disease states that reveals shared pathogenic activation states across four chronic inflammatory diseases. FUNDING: Grant from F. Hoffmann-La Roche (Roche) AG.


Asunto(s)
Artritis Reumatoide , Membrana Sinovial , Animales , Artritis Reumatoide/genética , Fibroblastos/metabolismo , Fenotipo , Células del Estroma/metabolismo
5.
Sci Rep ; 8(1): 14575, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275509

RESUMEN

Mutations in titin are responsible for many cardiac and muscle diseases, yet the underlying mechanisms remain largely unexplained. Numerous studies have established roles for titin in muscle function, and Ca2+-dependent interactions between titin and actin have been suggested to play a role in muscle contraction. The present study used co-sedimentation assays, dynamic force spectroscopy (DFS), and in vitro motility (IVM) assays to determine whether the N2A region of titin, overlooked in previous studies, interacts with actin in the presence of Ca2+. Co-sedimentation demonstrated that N2A - F-actin binding increases with increasing protein and Ca2+ concentration, DFS demonstrated increased rupture forces and decreased koff in the presence of Ca2+, and IVM demonstrated a Ca2+-dependent reduction in motility of F-actin and reconstituted thin filaments in the presence of N2A. These results indicate that Ca2+ increases the strength and stability of N2A - actin interactions, supporting the hypothesis that titin plays a regulatory role in muscle contraction. The results further support a model in which N2A - actin binding in active muscle increases titin stiffness, and that impairment of this mechanism contributes to the phenotype in muscular dystrophy with myositis. Future studies are required to determine whether titin - actin binding occurs in skeletal muscle sarcomeres in vivo.


Asunto(s)
Actinas/metabolismo , Calcio/metabolismo , Conectina/metabolismo , Unión Proteica
6.
Angew Chem Int Ed Engl ; 48(12): 2148-51, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19206126

RESUMEN

A cunning and dangerous plan foiled! An enzyme-specific molecular construct exploits the overexpression of beta-lactamase in several drug-resistant bacteria. Specific photodynamic toxicity was detected towards beta-lactam-resistant methicillin-resistant Staphylococcus aureus (MRSA), whereby the usual mechanism for antibiotic resistance (cleavage of the beta-lactam ring) releases the phototoxic component from the prodrug (see picture; Q = quencher).


Asunto(s)
Staphylococcus aureus Resistente a Meticilina/efectos de la radiación , beta-Lactamasas/efectos de la radiación , Cinética , Staphylococcus aureus Resistente a Meticilina/metabolismo , Pruebas de Sensibilidad Microbiana , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Profármacos/química , Profármacos/farmacología , beta-Lactamasas/metabolismo , beta-Lactamasas/toxicidad
7.
Photochem Photobiol ; 85(1): 111-8, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-18657053

RESUMEN

5-(Ethylamino)-9-diethylaminobenzo[a]phenothiazinium chloride (EtNBS) is a photosensitizer (PS) with broad antimicrobial photodynamic activity. The objective of this study was to determine the antimicrobial photodynamic effect of side chain/end group modifications of EtNBS on two representative bacterial Gram-type-specific strains. Two EtNBS derivatives were synthesized, each functionalized with a different side-chain end-group, alcohol or carboxylic acid. In solution, both exhibited photochemical properties consistent with those of the EtNBS parent molecule. In vitro photodynamic therapy experiments revealed an initial Gram-type-specificity with two representative strains; both derivatives were phototoxic to Staphylococcus aureus 29,213 but the carboxylic acid derivative was nontoxic to Escherichia coli 25,922. This difference in photodynamic efficacy was not due to a difference in the binding of the two molecules to the bacteria as the amount of both derivatives bound by bacteria was identical. Interestingly, the carboxylic acid derivative produced no fluorescence emission when observed in cultures of E. coli via fluorescence microscopy. These early findings suggest that the addition of small functional groups could achieve Gram-type-specific phototoxicity through altering the photodynamic activity of PSs and deserve further exploration in a larger number of representative strains of each Gram type.


Asunto(s)
Antibacterianos/química , Fenotiazinas/química , Fármacos Fotosensibilizantes/química , Antibacterianos/toxicidad , Escherichia coli/efectos de los fármacos , Escherichia coli/efectos de la radiación , Estructura Molecular , Fenotiazinas/toxicidad , Fármacos Fotosensibilizantes/toxicidad , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/efectos de la radiación
8.
J Lipid Res ; 46(8): 1779-85, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15897609

RESUMEN

Microsomal triglyceride transfer protein (MTP) activity is classically measured using radioactive lipids. We described a simple fluorescence assay to measure its triacylglycerol (TAG) transfer activity. Here, we describe fluorescence-based methods to measure the transfer of phospholipids (PLs) and cholesteryl esters (CEs) by MTP. Both transfer activities increased with time and MTP amounts and were inhibited to different extents by an MTP antagonist, BMS197636. We also describe a method to measure the net deposition of fluorescent lipids in acceptor vesicles. In this procedure, negatively charged donor vesicles are incubated with MTP and acceptor vesicles, and lipids transferred to acceptors are quantified after the removal of donor vesicles and MTP by the addition of DE52. Lipid deposition in acceptor vesicles was dependent on time and MTP. Using these methods, TAG transfer activity was the most robust activity present in purified MTP; CE and PL transfer activities were 60-71% and 5-13% of the TAG transfer activity, respectively. The method to determine lipid transfer is recommended for routine MTP activity measurements for its simplicity. These methods may help identify specific inhibitors for individual lipid transfer activities, in characterizing different domains involved in transfer, and in the isolation of mutants that bind but cannot transfer lipids.


Asunto(s)
Proteínas Portadoras/metabolismo , Ésteres del Colesterol/metabolismo , Fosfolípidos/metabolismo , Animales , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Bovinos , Cinética , Metabolismo de los Lípidos , Liposomas , Mutación , Radioisótopos , Triglicéridos/metabolismo
9.
J Lipid Res ; 45(4): 764-72, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14754905

RESUMEN

Microsomal triglyceride transfer protein (MTP) is critical for the assembly and secretion of apolipoprotein B (apoB) lipoproteins. Its activity is classically measured by incubating purified MTP or cellular homogenates with donor vesicles containing radiolabeled lipids, precipitating the donor vesicles, and measuring the radioactivity transferred to acceptor vesicles. Here, we describe a simple, rapid, and sensitive fluorescence assay for MTP. In this assay, purified MTP or cellular homogenates are incubated with small unilamellar donor vesicles containing quenched fluorescent lipids (triacylglycerols, cholesteryl esters, and phospholipids) and different types of acceptor vesicles made up of phosphatidylcholine or phosphatidylcholine and triacylglycerols. Increases in fluorescence attributable to MTP-mediated lipid transfer are measured after 30 min. MTP's lipid transfer activity could be assayed using apoB lipoproteins but not with high density lipoproteins as acceptors. The assay was used to measure MTP activity in cell and tissue homogenates. Furthermore, the assay was useful in studying the inhibition of the cellular as well as purified MTP by its antagonists. This new method is amenable to automation and can be easily adopted for large-scale, high-throughput screening.


Asunto(s)
Proteínas Portadoras/análisis , Microsomas Hepáticos/química , Animales , Proteínas Portadoras/metabolismo , Bovinos , Fluorometría/métodos , Cinética , Metabolismo de los Lípidos , Liposomas , Métodos
10.
J Biol Chem ; 278(22): 20367-73, 2003 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-12657646

RESUMEN

The assembly and secretion of triglyceride-rich lipoproteins in vertebrates requires apolipoprotein B (apoB) and the endoplasmic reticulum-localized cofactor, microsomal triglyceride transfer protein (MTP). Invertebrates, particularly insects, transport the majority of their neutral and polar lipids in lipophorins; however, the assembly of lipophorin precursor particles was presumed to be MTP-independent. A Drosophila melanogaster expressed gene sequence (CG9342), displaying 23% identity with human MTP, was recently identified. When coexpressed in COS cells, CG9342 promoted the assembly and secretion of apoB34 and apoB41 (N-terminal 34 and 41% of human apoB). The apoB34-containing particles assembled by human MTP and CG9342 displayed similar peak densities of approximately 1.169 g/ml and similar lipid compositions. However, CG9342 displayed differential sensitivities to two inhibitors of human MTP and low vesicle-based lipid transfer activity, in vitro. In addition, important predicted structural distinctions exist between the human and Drosophila proteins suggesting overlapping but not identical functional roles. We conclude that CG9342 and human MTP are orthologs that share only a subset of functions, consistent with known differences in intracellular and extracellular aspects of vertebrate and invertebrate lipid transport and metabolism.


Asunto(s)
Apolipoproteínas B/metabolismo , Proteínas Portadoras/metabolismo , Metabolismo de los Lípidos , Secuencia de Aminoácidos , Animales , Transporte Biológico , Células COS , Proteínas Portadoras/química , Drosophila melanogaster , Humanos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
11.
Thromb Haemost ; 88(5): 843-50, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12428104

RESUMEN

The F11 receptor (F11R) is a cell adhesion molecule (CAM), member of the immunoglobulin superfamily found on the surface of human platelets, and determined to play a role in platelet aggregation, secretion, adhesion and spreading. The same molecule is present also at tight junctions of endothelial cells (EC) where it is known as JAM and acts as a CAM through homophilic interactions. The role of F11R/JAM in the interaction of platelets with endothelial cells was investigated in the current studies. We report here that washed human platelets adhere specifically to a matrix made of immobilized, recombinant sF11R. Furthermore, platelets adhere to cytokine- (TNF-alpha, INF-gamma) stimulated human umbilical vein endothelial cells (HUVEC), and approximately 40-60% of the adhesive force is exerted by homophilic interactions between the F11R of platelets and EC. This is evidenced by the inhibition of platelet adhesion to endothelial cells by recombinant soluble form of the F11R, and by two F11R peptides with amino acid sequences of the N-terminal region, and in the 1(st) Ig fold of the F11R, respectively. This study suggests a role for F11R in the adhesion of platelets to cytokine-inflamed endothelial cells and thus in thrombosis and atherosclerosis induced in non-denuded blood vessels by inflammatory processes. Agents that block the F11R-mediated adhesion of platelets to EC may be of therapeutic value in controlling thrombosis and preventing heart attacks and stroke.


Asunto(s)
Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/fisiología , Endotelio Vascular/química , Adhesividad Plaquetaria , Trombosis/etiología , Sitios de Unión , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Endotelio Vascular/citología , Humanos , Inflamación/etiología , Inflamación/patología , Moléculas de Adhesión de Unión , Fragmentos de Péptidos/farmacología , Estructura Terciaria de Proteína , Trombosis/patología , Venas Umbilicales
12.
Thromb Haemost ; 87(4): 712-21, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12008956

RESUMEN

The F11 receptor (F11R) was first identified on the surface of human platelets as a target for a stimulatory monoclonal antibody (M.Ab.F11) that induces secretion, followed by exposure of fibrinogen receptors and aggregation. Cloning of the gene of F11R has revealed that this protein is a cell adhesion molecule (CAM), a member of the Ig superfamily and an ortholog of the murine protein called junctional adhesion molecule (JAM). The present study has identified two domains through which M.Ab.F11 triggers a platelet response culminating with aggregation. M.Ab.F11-mediated platelet adhesion, and the potentiation of collagen and ADP-induced platelet aggregation by M.Ab.F11, were found to involve the same two domains. A F11R recombinant protein (sF11R) completely inhibited platelet aggregation, adhesion and potentiation induced by M.Ab.F11, indicative that the active conformation of the external domain of F11R is present in the soluble, secreted recombinant protein. Furthermore, a specific peptide containing the sequence of the N-terminal amino acids S-1 to C-23 of F11R, and a peptide with the sequence of K-70 to C-82 in the 1st immunoglobulin-like (Ig) fold of F11R, both inhibited M.Ab.F11-induced aggregation, adhesion and potentiation of the aggregation of human platelets. Modeling of the 3D structure of the extracellular domain of the human platelet F11R suggests that these two regions form an active site within the conformation of this CAM. The sequence of these functional domains of F11R (in the N-terminus and 1st Ig-fold) provide the basis for new drug development in the treatment of certain types of thrombocytopenia and inflammatory thrombosis.


Asunto(s)
Moléculas de Adhesión Celular/química , Activación Plaquetaria/fisiología , Estructura Terciaria de Proteína/fisiología , Receptores de Superficie Celular/química , Adenosina Difosfato/farmacología , Animales , Anticuerpos Monoclonales/farmacología , Sitios de Unión , Células COS , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/farmacología , Chlorocebus aethiops , Colágeno/farmacología , Medios de Cultivo Condicionados/farmacología , Epítopos/química , Humanos , Modelos Moleculares , Activación Plaquetaria/efectos de los fármacos , Adhesividad Plaquetaria/efectos de los fármacos , Adhesividad Plaquetaria/fisiología , Agregación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/fisiología , Conformación Proteica , Mapeo de Interacción de Proteínas , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Trombina/farmacología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...