Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220381, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38368939

RESUMEN

Impairment of autophagic-lysosomal pathways is increasingly being implicated in Parkinson's disease (PD). GBA1 mutations cause the lysosomal storage disorder Gaucher disease (GD) and are the commonest known genetic risk factor for PD. GBA1 mutations have been shown to cause autophagic-lysosomal impairment. Defective autophagic degradation of unwanted cellular constituents is associated with several pathologies, including loss of normal protein homeostasis, particularly of α-synuclein, and innate immune dysfunction. The latter is observed both peripherally and centrally in PD and GD. Here, we will discuss the mechanistic links between autophagy and immune dysregulation, and the possible role of these pathologies in communication between the gut and brain in these disorders. Recent work in a fly model of neuronopathic GD (nGD) revealed intestinal autophagic defects leading to gastrointestinal dysfunction and immune activation. Rapamycin treatment partially reversed the autophagic block and reduced immune activity, in association with increased survival and improved locomotor performance. Alterations in the gut microbiome are a critical driver of neuroinflammation, and studies have revealed that eradication of the microbiome in nGD fly and mouse models of PD ameliorate brain inflammation. Following these observations, lysosomal-autophagic pathways, innate immune signalling and microbiome dysbiosis are discussed as potential therapeutic targets in PD and GD. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Asunto(s)
Enfermedad de Gaucher , Enfermedad de Parkinson , Animales , Ratones , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Autofagia/genética , Lisosomas/genética , Lisosomas/metabolismo , Lisosomas/patología , Descubrimiento de Drogas , Inmunidad Innata
2.
Proc Natl Acad Sci U S A ; 121(4): e2311313121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38241436

RESUMEN

Pharmacological therapies are promising interventions to slow down aging and reduce multimorbidity in the elderly. Studies in animal models are the first step toward translation of candidate molecules into human therapies, as they aim to elucidate the molecular pathways, cellular mechanisms, and tissue pathologies involved in the anti-aging effects. Trametinib, an allosteric inhibitor of MEK within the Ras/MAPK (Ras/Mitogen-Activated Protein Kinase) pathway and currently used as an anti-cancer treatment, emerged as a geroprotector candidate because it extended lifespan in the fruit fly Drosophila melanogaster. Here, we confirm that trametinib consistently and robustly extends female lifespan, and reduces intestinal stem cell (ISC) proliferation, tumor formation, tissue dysplasia, and barrier disruption in guts in aged flies. In contrast, pro-longevity effects of trametinib are weak and inconsistent in males, and it does not influence gut homeostasis. Inhibition of the Ras/MAPK pathway specifically in ISCs is sufficient to partially recapitulate the effects of trametinib. Moreover, in ISCs, trametinib decreases the activity of the RNA polymerase III (Pol III), a conserved enzyme synthesizing transfer RNAs and other short, non-coding RNAs, and whose inhibition also extends lifespan and reduces gut pathology. Finally, we show that the pro-longevity effect of trametinib in ISCs is partially mediated by Maf1, a repressor of Pol III, suggesting a life-limiting Ras/MAPK-Maf1-Pol III axis in these cells. The mechanism of action described in this work paves the way for further studies on the anti-aging effects of trametinib in mammals and shows its potential for clinical application in humans.


Asunto(s)
Drosophila melanogaster , Drosophila , Piridonas , Pirimidinonas , Animales , Masculino , Humanos , Femenino , Anciano , Drosophila melanogaster/genética , Envejecimiento/fisiología , Células Madre/metabolismo , Mamíferos
3.
PLoS Genet ; 19(12): e1011063, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38127816

RESUMEN

Mutations in the GBA1 gene cause the lysosomal storage disorder Gaucher disease (GD) and are the greatest known genetic risk factors for Parkinson's disease (PD). Communication between the gut and brain and immune dysregulation are increasingly being implicated in neurodegenerative disorders such as PD. Here, we show that flies lacking the Gba1b gene, the main fly orthologue of GBA1, display widespread NF-kB signalling activation, including gut inflammation, and brain glial activation. We also demonstrate intestinal autophagic defects, gut dysfunction, and microbiome dysbiosis. Remarkably, modulating the microbiome of Gba1b knockout flies, by raising them under germ-free conditions, partially ameliorates lifespan, locomotor and immune phenotypes. Moreover, we show that modulation of the immune deficiency (IMD) pathway is detrimental to the survival of Gba1 deficient flies. We also reveal that direct stimulation of autophagy by rapamycin treatment achieves similar benefits to germ-free conditions independent of gut bacterial load. Consistent with this, we show that pharmacologically blocking autophagosomal-lysosomal fusion, mimicking the autophagy defects of Gba1 depleted cells, is sufficient to stimulate intestinal immune activation. Overall, our data elucidate a mechanism whereby an altered microbiome, coupled with defects in autophagy, drive chronic activation of NF-kB signaling in a Gba1 loss-of-function model. It also highlights that elimination of the microbiota or stimulation of autophagy to remove immune mediators, rather than prolonged immunosuppression, may represent effective therapeutic avenues for GBA1-associated disorders.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Gaucher , Enfermedad de Parkinson , Animales , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Glucosilceramidasa/genética , Drosophila/genética , Drosophila/metabolismo , Microbioma Gastrointestinal/genética , FN-kappa B/genética , Disbiosis/genética , Enfermedad de Parkinson/genética , Autofagia/genética
4.
Neurobiol Aging ; 132: 154-174, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37837732

RESUMEN

Amyloid ß (Aß) accumulation is a hallmark of Alzheimer's disease. In adult Drosophila brains, human Aß overexpression harms climbing and lifespan. It's uncertain whether Aß is intrinsically toxic or activates downstream neurodegeneration pathways. Our study uncovers a novel protective role against Aß toxicity: intra-endoplasmic reticulum (ER) protein accumulation with a focus on laminin and collagen subunits. Despite high Aß, laminin B1 (LanB1) overexpression robustly counters toxicity, suggesting a potential Aß resistance mechanism. Other laminin subunits and collagen IV also alleviate Aß toxicity; combining them with LanB1 augments the effect. Imaging reveals ER retention of LanB1 without altering Aß secretion. LanB1's rescue function operates independently of the IRE1α/XBP1 ER stress response. ER-targeted GFP overexpression also mitigates Aß toxicity, highlighting broader ER protein retention advantages. Proof-of-principle tests in murine hippocampal slices using mouse Lamb1 demonstrate ER retention in transduced cells, indicating a conserved mechanism. Though ER protein retention generally harms, it could paradoxically counter neuronal Aß toxicity, offering a new therapeutic avenue for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Animales , Ratones , Humanos , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/metabolismo , Drosophila , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Endorribonucleasas/metabolismo , Laminina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Colágeno/metabolismo
5.
PLoS Genet ; 19(9): e1010893, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37733679

RESUMEN

Brains are highly metabolically active organs, consuming 20% of a person's energy at resting state. A decline in glucose metabolism is a common feature across a number of neurodegenerative diseases. Another common feature is the progressive accumulation of insoluble protein deposits, it's unclear if the two are linked. Glucose metabolism in the brain is highly coupled between neurons and glia, with glucose taken up by glia and metabolised to lactate, which is then shuttled via transporters to neurons, where it is converted back to pyruvate and fed into the TCA cycle for ATP production. Monocarboxylates are also involved in signalling, and play broad ranging roles in brain homeostasis and metabolic reprogramming. However, the role of monocarboxylates in dementia has not been tested. Here, we find that increasing pyruvate import in Drosophila neurons by over-expression of the transporter bumpel, leads to a rescue of lifespan and behavioural phenotypes in fly models of both frontotemporal dementia and Alzheimer's disease. The rescue is linked to a clearance of late stage autolysosomes, leading to degradation of toxic peptides associated with disease. We propose upregulation of pyruvate import into neurons as potentially a broad-scope therapeutic approach to increase neuronal autophagy, which could be beneficial for multiple dementias.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Humanos , Animales , Demencia Frontotemporal/genética , Enfermedad de Alzheimer/genética , Neuroglía , Ácido Pirúvico , Drosophila , Glucosa
6.
Elife ; 102021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33739284

RESUMEN

G4C2 repeat expansions within the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The repeats undergo repeat-associated non-ATG translation to generate toxic dipeptide repeat proteins. Here, we show that insulin/IGF signalling is reduced in fly models of C9orf72 repeat expansion using RNA sequencing of adult brain. We further demonstrate that activation of insulin/IGF signalling can mitigate multiple neurodegenerative phenotypes in flies expressing either expanded G4C2 repeats or the toxic dipeptide repeat protein poly-GR. Levels of poly-GR are reduced when components of the insulin/IGF signalling pathway are genetically activated in the diseased flies, suggesting a mechanism of rescue. Modulating insulin signalling in mammalian cells also lowers poly-GR levels. Remarkably, systemic injection of insulin improves the survival of flies expressing G4C2 repeats. Overall, our data suggest that modulation of insulin/IGF signalling could be an effective therapeutic approach against C9orf72 ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/toxicidad , Expansión de las Repeticiones de ADN , Drosophila melanogaster/fisiología , Demencia Frontotemporal/genética , Insulina/fisiología , Transducción de Señal , Animales , Proteína C9orf72/genética , Femenino
7.
Acta Neuropathol ; 137(3): 487-500, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30604225

RESUMEN

A GGGGCC hexanucleotide repeat expansion within the C9orf72 gene is the most common genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia. Sense and antisense repeat-containing transcripts undergo repeat-associated non-AUG-initiated translation to produce five dipeptide proteins (DPRs). The polyGR and polyPR DPRs are extremely toxic when expressed in Drosophila neurons. To determine the mechanism that mediates this toxicity, we purified DPRs from the Drosophila brain and used mass spectrometry to identify the in vivo neuronal DPR interactome. PolyGR and polyPR interact with ribosomal proteins, and inhibit translation in both human iPSC-derived motor neurons, and adult Drosophila neurons. We next performed a screen of 81 translation-associated proteins in GGGGCC repeat-expressing Drosophila to determine whether this translational repression can be overcome and if this impacts neurodegeneration. Expression of the translation initiation factor eIF1A uniquely rescued DPR-induced toxicity in vivo, indicating that restoring translation is a potential therapeutic strategy. These data directly implicate translational repression in C9orf72 repeat-induced neurodegeneration and identify eIF1A as a novel modifier of C9orf72 repeat toxicity.


Asunto(s)
Proteína C9orf72/metabolismo , Factor 1 Eucariótico de Iniciación/metabolismo , Neuronas/metabolismo , Biosíntesis de Proteínas/fisiología , Esclerosis Amiotrófica Lateral/genética , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN , Dipéptidos/metabolismo , Drosophila , Demencia Frontotemporal/genética , Humanos
8.
Genetics ; 207(1): 163-178, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28706002

RESUMEN

Small noncoding RNAs called microRNAs (miRNAs) have emerged as post-transcriptional regulators of gene expression related to host defenses. Here, we have used Drosophila melanogaster to explore the contribution of individual or clusters of miRNAs in countering systemic Candida albicans infection. From a total of 72 tested, we identify 6 miRNA allelic mutant backgrounds that modulate the survival response to infection and the ability to control pathogen number. These mutants also exhibit dysregulation of the Toll pathway target transcripts Drosomycin (Drs) and Immune-Induced Molecule 1 (IM1). These are characteristics of defects in Toll signaling, and consistent with this, we demonstrate dependency for one of the miRNA mutants on the NF-κΒ homolog Dif. We also quantify changes in the miRNA expression profile over time in response to three pathogen types, and identify 13 mature miRNA forms affected by pathogens that stimulate Toll signaling. To complement this, we provide a genome-wide map of potential NF-κB sites in proximity to miRNA genes. Finally, we demonstrate that systemic C. albicans infection contributes to a reduction in the total amount of branch-chained amino acids, which is miRNA-regulated. Overall, our data reveal a new layer of miRNA complexity regulating the fly response to systemic fungal infection.


Asunto(s)
Candidiasis/inmunología , Drosophila melanogaster/genética , Inmunidad Innata/genética , MicroARNs/genética , Animales , Candida albicans/patogenicidad , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/inmunología , Drosophila melanogaster/microbiología , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
PLoS Pathog ; 11(5): e1004891, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25951442

RESUMEN

Many important cellular processes are performed by molecular machines, composed of multiple proteins that physically interact to execute biological functions. An example is the bacterial peptidoglycan (PG) synthesis machine, responsible for the synthesis of the main component of the cell wall and the target of many contemporary antibiotics. One approach for the identification of essential components of a cellular machine involves the determination of its minimal protein composition. Staphylococcus aureus is a Gram-positive pathogen, renowned for its resistance to many commonly used antibiotics and prevalence in hospitals. Its genome encodes a low number of proteins with PG synthesis activity (9 proteins), when compared to other model organisms, and is therefore a good model for the study of a minimal PG synthesis machine. We deleted seven of the nine genes encoding PG synthesis enzymes from the S. aureus genome without affecting normal growth or cell morphology, generating a strain capable of PG biosynthesis catalyzed only by two penicillin-binding proteins, PBP1 and the bi-functional PBP2. However, multiple PBPs are important in clinically relevant environments, as bacteria with a minimal PG synthesis machinery became highly susceptible to cell wall-targeting antibiotics, host lytic enzymes and displayed impaired virulence in a Drosophila infection model which is dependent on the presence of specific peptidoglycan receptor proteins, namely PGRP-SA. The fact that S. aureus can grow and divide with only two active PG synthesizing enzymes shows that most of these enzymes are redundant in vitro and identifies the minimal PG synthesis machinery of S. aureus. However a complex molecular machine is important in environments other than in vitro growth as the expendable PG synthesis enzymes play an important role in the pathogenicity and antibiotic resistance of S. aureus.


Asunto(s)
Antibacterianos/farmacología , Pared Celular/metabolismo , Farmacorresistencia Bacteriana Múltiple , Staphylococcus aureus Resistente a Meticilina/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/biosíntesis , Peptidil Transferasas/metabolismo , Animales , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/ultraestructura , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiología , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Staphylococcus aureus Resistente a Meticilina/ultraestructura , Viabilidad Microbiana/efectos de los fármacos , Mutación , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano Glicosiltransferasa/genética , Peptidoglicano Glicosiltransferasa/metabolismo , Peptidil Transferasas/genética , Filogenia , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Virulencia/efectos de los fármacos
10.
PLoS Pathog ; 11(5): e1004919, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26001194

RESUMEN

Listeria monocytogenes is an opportunistic Gram-positive bacterial pathogen responsible for listeriosis, a human foodborne disease. Its cell wall is densely decorated with wall teichoic acids (WTAs), a class of anionic glycopolymers that play key roles in bacterial physiology, including protection against the activity of antimicrobial peptides (AMPs). In other Gram-positive pathogens, WTA modification by amine-containing groups such as D-alanine was largely correlated with resistance to AMPs. However, in L. monocytogenes, where WTA modification is achieved solely via glycosylation, WTA-associated mechanisms of AMP resistance were unknown. Here, we show that the L-rhamnosylation of L. monocytogenes WTAs relies not only on the rmlACBD locus, which encodes the biosynthetic pathway for L-rhamnose, but also on rmlT encoding a putative rhamnosyltransferase. We demonstrate that this WTA tailoring mechanism promotes resistance to AMPs, unveiling a novel link between WTA glycosylation and bacterial resistance to host defense peptides. Using in vitro binding assays, fluorescence-based techniques and electron microscopy, we show that the presence of L-rhamnosylated WTAs at the surface of L. monocytogenes delays the crossing of the cell wall by AMPs and postpones their contact with the listerial membrane. We propose that WTA L-rhamnosylation promotes L. monocytogenes survival by decreasing the cell wall permeability to AMPs, thus hindering their access and detrimental interaction with the plasma membrane. Strikingly, we reveal a key contribution of WTA L-rhamnosylation for L. monocytogenes virulence in a mouse model of infection.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/metabolismo , Pared Celular/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Listeria monocytogenes/fisiología , Listeriosis/microbiología , Ramnosa/química , Ácidos Teicoicos/farmacología , Animales , Antiinfecciosos/farmacología , Células Cultivadas , Glicosilación , Humanos , Listeriosis/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Virulencia
11.
PLoS One ; 8(5): e64518, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23691239

RESUMEN

Subinhibitory concentrations of the neuroleptic drug thioridazine (TDZ) are well-known to enhance the killing of methicillin-resistant Staphylococcus aureus (MRSA) by ß-lactam antibiotics, however, the mechanism underlying the synergy between TDZ and ß-lactams is not fully understood. In the present study, we have examined the effect of a subinhibitory concentration of TDZ on antimicrobial resistance, the global transcriptome, and the cell wall composition of MRSA USA300. We show that TDZ is able to sensitize the bacteria to several classes of antimicrobials targeting the late stages of peptidoglycan (PGN) synthesis. Furthermore, our microarray analysis demonstrates that TDZ modulates the expression of genes encoding membrane and surface proteins, transporters, and enzymes involved in amino acid biosynthesis. Interestingly, resemblance between the transcriptional profile of TDZ treatment and the transcriptomic response of S. aureus to known inhibitors of cell wall synthesis suggests that TDZ disturbs PGN biosynthesis at a stage that precedes transpeptidation by penicillin-binding proteins (PBPs). In support of this notion, dramatic changes in the muropeptide profile of USA300 were observed following growth in the presence of TDZ, indicating that TDZ can interfere with the formation of the pentaglycine branches. Strikingly, the addition of glycine to the growth medium relieved the effect of TDZ on the muropeptide profile. Furthermore, exogenous glycine offered a modest protective effect against TDZ-induced ß-lactam sensitivity. We propose that TDZ exposure leads to a shortage of intracellular amino acids, including glycine, which is required for the production of normal PGN precursors with pentaglycine branches, the correct substrate of S. aureus PBPs. Collectively, this work demonstrates that TDZ has a major impact on the cell wall biosynthesis pathway in S. aureus and provides new insights into how MRSA may be sensitized towards ß-lactam antibiotics.


Asunto(s)
Antipsicóticos/farmacología , Pared Celular/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/metabolismo , Tioridazina/farmacología , Resistencia betalactámica/efectos de los fármacos , Pared Celular/efectos de los fármacos , Glicina/farmacología , Modelos Lineales , Staphylococcus aureus Resistente a Meticilina/genética , Análisis por Micromatrices , Pruebas de Sensibilidad Microbiana , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/biosíntesis
12.
PLoS Pathog ; 7(12): e1002421, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22144903

RESUMEN

The cell wall of gram-positive bacteria is a complex network of surface proteins, capsular polysaccharides and wall teichoic acids (WTA) covalently linked to Peptidoglycan (PG). The absence of WTA has been associated with a reduced pathogenicity of Staphylococcus aureus (S. aureus). Here, we assessed whether this was due to increased detection of PG, an important target of innate immune receptors. Antibiotic-mediated or genetic inhibition of WTA production in S. aureus led to increased binding of the non-lytic PG Recognition Protein-SA (PGRP-SA), and this was associated with a reduction in host susceptibility to infection. Moreover, PGRP-SD, another innate sensor required to control wild type S. aureus infection, became redundant. Our data imply that by using WTA to limit access of innate immune receptors to PG, under-detected bacteria are able to establish an infection and ultimately overwhelm the host. We propose that different PGRPs work in concert to counter this strategy.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Peptidoglicano/metabolismo , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad , Ácidos Teicoicos/metabolismo , Animales , Antibacterianos/farmacología , Proteínas Portadoras/genética , Pared Celular/genética , Pared Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Peptidoglicano/genética , Infecciones Estafilocócicas/genética , Staphylococcus aureus/genética , Ácidos Teicoicos/genética
13.
Proc Natl Acad Sci U S A ; 107(44): 18991-6, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-20944066

RESUMEN

The cell wall of Staphylococcus aureus is characterized by an extremely high degree of cross-linking within its peptidoglycan (PGN). Penicillin-binding protein 4 (PBP4) is required for the synthesis of this highly cross-linked peptidoglycan. We found that wall teichoic acids, glycopolymers attached to the peptidoglycan and important for virulence in Gram-positive bacteria, act as temporal and spatial regulators of PGN metabolism, controlling the level of cross-linking by regulating PBP4 localization. PBP4 normally localizes at the division septum, but in the absence of wall teichoic acids synthesis, it becomes dispersed throughout the entire cell membrane and is unable to function normally. As a consequence, the peptidoglycan of TagO null mutants, impaired in wall teichoic acid biosynthesis, has a decreased degree of cross-linking, which renders it more susceptible to the action of lysozyme, an enzyme produced by different host organisms as an initial defense against bacterial infection.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/metabolismo , Membrana Celular/genética , Mutación , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano/genética , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Ácidos Teicoicos/genética
14.
Proc Natl Acad Sci U S A ; 105(33): 11881-6, 2008 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-18697931

RESUMEN

In Drosophila, the enzymatic activity of the glucan binding protein GNBP1 is needed to present Gram-positive peptidoglycan (PG) to peptidoglycan recognition protein SA (PGRP-SA). However, an additional PGRP (PGRP-SD) has been proposed to play a partially redundant role with GNBP1 and PGRP-SA. To reconcile the genetic results with events at the molecular level, we investigated how PGRP-SD participates in the sensing of Gram-positive bacteria. PGRP-SD enhanced the binding of GNBP1 to Gram-positive PG. PGRP-SD interacted with GNBP1 and enhanced the interaction between GNBP1 and PGRP-SA. A complex containing all three proteins could be detected in native gels in the presence of PG. In solution, addition of a highly purified PG fragment induced the occurrence not only of the ternary complex but also of dimeric subcomplexes. These results indicate that the interplay between the binding affinities of different PGRPs provides sufficient flexibility for the recognition of the highly diverse Gram-positive PG.


Asunto(s)
Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo , Drosophila melanogaster/inmunología , Drosophila melanogaster/metabolismo , Animales , Proteínas Portadoras/genética , Dimerización , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Péptidos/metabolismo , Peptidoglicano/metabolismo , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Transducción de Señal
15.
EMBO J ; 25(20): 5005-14, 2006 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-17024181

RESUMEN

Genetic evidence indicates that Drosophila defense against Gram-positive bacteria is mediated by two putative pattern recognition receptors acting upstream of Toll, namely Gram-negative binding protein 1 (GNBP1) and peptidoglycan recognition protein SA (PGRP-SA). Until now however, the molecular recognition proceedings for sensing of Gram-positive pathogens were not known. In the present, we report the physical interaction between GNBP1 and PGRP-SA using recombinant proteins. GNBP1 was able to hydrolyze Gram-positive peptidoglycan (PG), while PGRP-SA bound highly purified PG fragments (muropeptides). Interaction between these proteins was enhanced in the presence of PG or muropeptides. PGRP-SA binding depended on the polymerization status of the muropeptides, pointing to constraints in the number of PGRP-SA molecules bound for signaling initiation. We propose a model whereby GNBP1 presents a processed form of PG for sensing by PGRP-SA and that a tripartite interaction between these proteins and PG is essential for downstream signaling.


Asunto(s)
Presentación de Antígeno/inmunología , Proteínas Portadoras/inmunología , Proteínas de Drosophila/inmunología , Bacterias Grampositivas/inmunología , Peptidoglicano/inmunología , Transducción de Señal/inmunología , Animales , Presentación de Antígeno/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Bacterias Grampositivas/genética , Bacterias Grampositivas/metabolismo , Infecciones por Bacterias Grampositivas/genética , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/metabolismo , Peptidoglicano/metabolismo , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA