Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(8): 114629, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39146183

RESUMEN

In mice, the first liver-resident macrophages, known as Kupffer cells (KCs), are thought to derive from yolk sac (YS) hematopoietic progenitors that are specified prior to the emergence of the hematopoietic stem cell (HSC). To investigate human KC development, we recapitulated YS-like hematopoiesis from human pluripotent stem cells (hPSCs) and transplanted derivative macrophage progenitors into NSG mice previously humanized with hPSC-liver sinusoidal endothelial cells (LSECs). We demonstrate that hPSC-LSECs facilitate stable hPSC-YS-macrophage engraftment for at least 7 weeks. Single-cell RNA sequencing (scRNA-seq) of engrafted YS-macrophages revealed a homogeneous MARCO-expressing KC gene signature and low expression of monocyte-like macrophage genes. In contrast, human cord blood (CB)-derived macrophage progenitors generated grafts that contain multiple hematopoietic lineages in addition to KCs. Functional analyses showed that the engrafted KCs actively perform phagocytosis and erythrophagocytosis in vivo. Taken together, these findings demonstrate that it is possible to generate human KCs from hPSC-derived, YS-like progenitors.


Asunto(s)
Diferenciación Celular , Células Endoteliales , Macrófagos del Hígado , Hígado , Células Madre Pluripotentes , Humanos , Macrófagos del Hígado/metabolismo , Macrófagos del Hígado/citología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Células Endoteliales/metabolismo , Células Endoteliales/citología , Animales , Hígado/citología , Hígado/metabolismo , Ratones , Fagocitosis , Hematopoyesis
2.
Nat Cardiovasc Res ; 3(5): 567-593, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39086373

RESUMEN

Yolk sac macrophages are the first to seed the developing heart, however we have no understanding of their roles in human heart development and function due to a lack of accessible tissue. Here, we bridge this gap by differentiating human embryonic stem cells (hESCs) into primitive LYVE1+ macrophages (hESC-macrophages) that stably engraft within contractile cardiac microtissues composed of hESC-cardiomyocytes and fibroblasts. Engraftment induces a human fetal cardiac macrophage gene program enriched in efferocytic pathways. Functionally, hESC-macrophages trigger cardiomyocyte sarcomeric protein maturation, enhance contractile force and improve relaxation kinetics. Mechanistically, hESC-macrophages engage in phosphatidylserine dependent ingestion of apoptotic cardiomyocyte cargo, which reduces microtissue stress, leading hESC-cardiomyocytes to more closely resemble early human fetal ventricular cardiomyocytes, both transcriptionally and metabolically. Inhibiting hESC-macrophage efferocytosis impairs sarcomeric protein maturation and reduces cardiac microtissue function. Taken together, macrophage-engineered human cardiac microtissues represent a considerably improved model for human heart development, and reveal a major beneficial role for human primitive macrophages in enhancing early cardiac tissue function.

3.
J Exp Med ; 219(3)2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-34928315

RESUMEN

In the mouse, the first hematopoietic cells are generated in the yolk sac from the primitive, erythro-myeloid progenitor (EMP) and lymphoid programs that are specified before the emergence of hematopoietic stem cells. While many of the yolk sac-derived populations are transient, specific immune cell progeny seed developing tissues, where they function into adult life. To access the human equivalent of these lineages, we modeled yolk sac hematopoietic development using pluripotent stem cell differentiation. Here, we show that the combination of Activin A, BMP4, and FGF2 induces a population of KDR+CD235a/b+ mesoderm that gives rise to the spectrum of erythroid, myeloid, and T lymphoid lineages characteristic of the mouse yolk sac hematopoietic programs, including the Vδ2+ subset of γ/δ T cells that develops early in the human embryo. Through clonal analyses, we identified a multipotent hematopoietic progenitor with erythroid, myeloid, and T lymphoid potential, suggesting that the yolk sac EMP and lymphoid lineages may develop from a common progenitor.


Asunto(s)
Hematopoyesis , Modelos Biológicos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Saco Vitelino/citología , Animales , Biomarcadores , Diferenciación Celular/genética , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Inmunofenotipificación , Células Progenitoras Linfoides/citología , Células Progenitoras Linfoides/metabolismo , Linfopoyesis/genética , Ratones , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...