Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Cardiovasc Res ; 120(8): 899-913, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38377486

RESUMEN

AIMS: The lymphocyte adaptor protein (LNK) is a negative regulator of cytokine and growth factor signalling. The rs3184504 variant in SH2B3 reduces LNK function and is linked to cardiovascular, inflammatory, and haematologic disorders, including stroke. In mice, deletion of Lnk causes inflammation and oxidative stress. We hypothesized that Lnk-/- mice are susceptible to atrial fibrillation (AF) and that rs3184504 is associated with AF and AF-related stroke in humans. During inflammation, reactive lipid dicarbonyls are the major components of oxidative injury, and we further hypothesized that these mediators are critical drivers of the AF substrate in Lnk-/- mice. METHODS AND RESULTS: Lnk-/- or wild-type (WT) mice were treated with vehicle or 2-hydroxybenzylamine (2-HOBA), a dicarbonyl scavenger, for 3 months. Compared with WT, Lnk-/- mice displayed increased AF duration that was prevented by 2-HOBA. In the Lnk-/- atria, action potentials were prolonged with reduced transient outward K+ current, increased late Na+ current, and reduced peak Na+ current, pro-arrhythmic effects that were inhibited by 2-HOBA. Mitochondrial dysfunction, especially for Complex I, was evident in Lnk-/- atria, while scavenging lipid dicarbonyls prevented this abnormality. Tumour necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1ß) were elevated in Lnk-/- plasma and atrial tissue, respectively, both of which caused electrical and bioenergetic remodelling in vitro. Inhibition of soluble TNF-α prevented electrical remodelling and AF susceptibility, while IL-1ß inhibition improved mitochondrial respiration but had no effect on AF susceptibility. In a large database of genotyped patients, rs3184504 was associated with AF, as well as AF-related stroke. CONCLUSION: These findings identify a novel role for LNK in the pathophysiology of AF in both experimental mice and humans. Moreover, reactive lipid dicarbonyls are critical to the inflammatory AF substrate in Lnk-/- mice and mediate the pro-arrhythmic effects of pro-inflammatory cytokines, primarily through electrical remodelling.


Asunto(s)
Potenciales de Acción , Proteínas Adaptadoras Transductoras de Señales , Fibrilación Atrial , Modelos Animales de Enfermedad , Interleucina-1beta , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos , Animales , Femenino , Humanos , Masculino , Potenciales de Acción/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/genética , Bencilaminas/farmacología , Predisposición Genética a la Enfermedad , Frecuencia Cardíaca/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética
2.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834023

RESUMEN

The ACTN2 gene encodes α-actinin 2, located in the Z-disc of the sarcomeres in striated muscle. In this study, we sought to investigate the effects of an ACTN2 missense variant of unknown significance (p.A868T) on cardiac muscle structure and function. Left ventricular free wall samples were obtained at the time of cardiac transplantation from a heart failure patient with the ACTN2 A868T heterozygous variant. This variant is in the EF 3-4 domain known to interact with titin and α-actinin. At the ultrastructural level, ACTN2 A868T cardiac samples presented small structural changes in cardiomyocytes when compared to healthy donor samples. However, contractile mechanics of permeabilized ACTN2 A868T variant cardiac tissue displayed higher myofilament Ca2+ sensitivity of isometric force, reduced sinusoidal stiffness, and faster rates of tension redevelopment at all Ca2+ levels. Small-angle X-ray diffraction indicated increased separation between thick and thin filaments, possibly contributing to changes in muscle kinetics. Molecular dynamics simulations indicated that while the mutation does not significantly impact the structure of α-actinin on its own, it likely alters the conformation associated with titin binding. Our results can be explained by two Z-disc mediated communication pathways: one pathway that involves α-actinin's interaction with actin, affecting thin filament regulation, and the other pathway that involves α-actinin's interaction with titin, affecting thick filament activation. This work establishes the role of α-actinin 2 in modulating cross-bridge kinetics and force development in the human myocardium as well as how it can be involved in the development of cardiac disease.


Asunto(s)
Actinina , Miofibrillas , Humanos , Actinina/genética , Actinina/metabolismo , Conectina/genética , Conectina/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Sarcómeros/metabolismo
3.
Res Sq ; 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37292825

RESUMEN

Background: Idiopathic subglottic stenosis (iSGS) is a rare fibrotic disease of the proximal airway affecting adult Caucasian women nearly exclusively. Life-threatening ventilatory obstruction occurs secondary to pernicious subglottic mucosal scar. Disease rarity and wide geographic patient distribution has previously limited substantive mechanistic investigation into iSGS pathogenesis. Result: By harnessing pathogenic mucosa from an international iSGS patient cohort and single-cell RNA sequencing, we unbiasedly characterize the cell subsets in the proximal airway scar and detail their molecular phenotypes. Results show that the airway epithelium in iSGS patients is depleted of basal progenitor cells, and the residual epithelial cells acquire a mesenchymal phenotype. Observed displacement of bacteria beneath the lamina propria provides functional support for the molecular evidence of epithelial dysfunction. Matched tissue microbiomes support displacement of the native microbiome into the lamina propria of iSGS patients rather than disrupted bacterial community structure. However, animal models confirm that bacteria are necessary for pathologic proximal airway fibrosis and suggest an equally essential role for host adaptive immunity. Human samples from iSGS airway scar demonstrate adaptive immune activation in response to the proximal airway microbiome of both matched iSGS patients and healthy controls. Clinical outcome data from iSGS patients suggests surgical extirpation of airway scar and reconstitution with unaffected tracheal mucosa halts the progressive fibrosis. Conclusion: Our data support an iSGS disease model where epithelial alterations facilitate microbiome displacement, dysregulated immune activation, and localized fibrosis. These results refine our understanding of iSGS and implicate shared pathogenic mechanisms with distal airway fibrotic diseases.

4.
J Histochem Cytochem ; 71(5): 237-257, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37119278

RESUMEN

Phosphorylated biomarkers are crucial for our understanding of drug mechanism of action and dose selection during clinical trials, particularly for drugs that target protein kinases, such as DNA-damage-response (DDR) inhibitors. However, tissue fixation conditions needed to preserve DDR-specific phospho-biomarkers have not been previously investigated. Using xenograft tissues and tightly controlled formalin fixation conditions, we assessed how preanalytical factors affect phosphorylated DDR biomarkers pRAD50(Ser635), ɣH2AX(Ser139), pKAP1(Ser824), and non-phosphorylated biomarkers cMYC and ATM. Cold ischemia times ranged from 15 min to 6 hr, and the fixation duration ranged from 24 hr to 4 weeks. Epitopes pRAD50 and pKAP1 appeared the most labile assessed with staining loss after just 15 min of cold ischemia time, while ATM was more robust showing consistent expression up to 1 hr of cold ischemia. Notably, ɣH2AX expression was lost with formalin fixation over 48 hr. The use of core needle biopsies where possible and novel fixation methods such as the 2-step temperature-controlled formalin approach may improve phosphorylated biomarker preservation; however, practical challenges may affect wider clinical application. The most essential tissue-processing step when downstream analysis includes DDR phosphorylated biomarkers is immediate tissue submersion in formalin, without delay, upon excision from the patient, followed by room temperature fixation for 24 hr.


Asunto(s)
Daño del ADN , Formaldehído , Humanos , Epítopos , Biomarcadores , Fijación del Tejido/métodos
6.
Mol Cancer Ther ; 21(10): 1535-1546, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-35930755

RESUMEN

AZD4625 is a potent, selective, and orally bioavailable inhibitor of oncogenic KRASG12C as demonstrated in cellular assays and in vivo in preclinical cell line-derived and patient-derived xenograft models. In vitro and cellular assays have shown selective binding and inhibition of the KRASG12C mutant isoform, which carries a glycine to cysteine mutation at residue 12, with no binding and inhibition of wild-type RAS or isoforms carrying non-KRASG12C mutations. The pharmacology of AZD4625 shows that it has the potential to provide therapeutic benefit to patients with KRASG12C mutant cancer as either a monotherapy treatment or in combination with other targeted drug agents.


Asunto(s)
Antineoplásicos , Cisteína , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Glicina/farmacología , Humanos , Mutación , Isoformas de Proteínas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Anal Chem ; 94(3): 1795-1803, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35005896

RESUMEN

Gemcitabine (dFdC) is a common treatment for pancreatic cancer; however, it is thought that treatment may fail because tumor stroma prevents drug distribution to tumor cells. Gemcitabine is a pro-drug with active metabolites generated intracellularly; therefore, visualizing the distribution of parent drug as well as its metabolites is important. A multimodal imaging approach was developed using spatially coregistered mass spectrometry imaging (MSI), imaging mass cytometry (IMC), multiplex immunofluorescence microscopy (mIF), and hematoxylin and eosin (H&E) staining to assess the local distribution and metabolism of gemcitabine in tumors from a genetically engineered mouse model of pancreatic cancer (KPC) allowing for comparisons between effects in the tumor tissue and its microenvironment. Mass spectrometry imaging (MSI) enabled the visualization of the distribution of gemcitabine (100 mg/kg), its phosphorylated metabolites dFdCMP, dFdCDP and dFdCTP, and the inactive metabolite dFdU. Distribution was compared to small-molecule ATR inhibitor AZD6738 (25 mg/kg), which was codosed. Gemcitabine metabolites showed heterogeneous distribution within the tumor, which was different from the parent compound. The highest abundance of dFdCMP, dFdCDP, and dFdCTP correlated with distribution of endogenous AMP, ADP, and ATP in viable tumor cell regions, showing that gemcitabine active metabolites are reaching the tumor cell compartment, while AZD6738 was located to nonviable tumor regions. The method revealed that the generation of active, phosphorylated dFdC metabolites as well as treatment-induced DNA damage primarily correlated with sites of high proliferation in KPC PDAC tumor tissue, rather than sites of high parent drug abundance.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/tratamiento farmacológico , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Ratones , Imagen Multimodal , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Gemcitabina
8.
J Am Soc Mass Spectrom ; 32(12): 2791-2802, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34767352

RESUMEN

A more complete and holistic view on host-microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.


Asunto(s)
Espectrometría de Masas/métodos , Imagen Molecular/métodos , Infecciones por Salmonella/diagnóstico por imagen , Infecciones por Salmonella/microbiología , Salmonella typhimurium/química , Animales , Femenino , Ratones , Ratones Endogámicos C57BL
10.
Clin Cancer Res ; 27(1): 189-201, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33028591

RESUMEN

PURPOSE: Osimertinib is a potent and selective EGFR tyrosine kinase inhibitor (EGFR-TKI) of both sensitizing and T790M resistance mutations. To treat metastatic brain disease, blood-brain barrier (BBB) permeability is considered desirable for increasing clinical efficacy. EXPERIMENTAL DESIGN: We examined the level of brain penetration for 16 irreversible and reversible EGFR-TKIs using multiple in vitro and in vivo BBB preclinical models. RESULTS: In vitro osimertinib was the weakest substrate for human BBB efflux transporters (efflux ratio 3.2). In vivo rat free brain to free plasma ratios (Kpuu) show osimertinib has the most BBB penetrance (0.21), compared with the other TKIs (Kpuu ≤ 0.12). PET imaging in Cynomolgus macaques demonstrated osimertinib was the only TKI among those tested to achieve significant brain penetrance (C max %ID 1.5, brain/blood Kp 2.6). Desorption electrospray ionization mass spectroscopy images of brains from mouse PC9 macrometastases models showed osimertinib readily distributes across both healthy brain and tumor tissue. Comparison of osimertinib with the poorly BBB penetrant afatinib in a mouse PC9 model of subclinical brain metastases showed only osimertinib has a significant effect on rate of brain tumor growth. CONCLUSIONS: These preclinical studies indicate that osimertinib can achieve significant exposure in the brain compared with the other EGFR-TKIs tested and supports the ongoing clinical evaluation of osimertinib for the treatment of EGFR-mutant brain metastasis. This work also demonstrates the link between low in vitro transporter efflux ratios and increased brain penetrance in vivo supporting the use of in vitro transporter assays as an early screen in drug discovery.


Asunto(s)
Acrilamidas/farmacocinética , Compuestos de Anilina/farmacocinética , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacocinética , Acrilamidas/administración & dosificación , Compuestos de Anilina/administración & dosificación , Animales , Neoplasias Encefálicas/secundario , Perros , Receptores ErbB/antagonistas & inhibidores , Humanos , Neoplasias Pulmonares/patología , Macaca fascicularis , Células de Riñón Canino Madin Darby , Masculino , Ratones , Permeabilidad , Inhibidores de Proteínas Quinasas/administración & dosificación , Ratas , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
11.
J Phycol ; 56(6): 1591-1600, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32679619

RESUMEN

Marine heatwaves (MHWs) are emerging as forceful agents of ecosystem change and are increasing in frequency, duration, and intensity with climate change. During MHWs, physiological thresholds of native species may be exceeded while the performance of invasive species with warm affinities may be enhanced. As a consequence, MHWs could significantly alter an ecosystem's invasive dynamics, but such interactions are poorly understood. Following a 10-d acclimation period, we investigated the physiological resistance and resilience of an intertidal rock pool assemblage invaded by the seaweed Sargassum muticum to realistic 14-d marine heatwave scenarios (+1.5°C, +2.0°C, +3.5°C) followed by a 14-d recovery period. We conducted mesocosm experiments in both summer and winter to investigate temporal variability of MHWs. MHW treatments had clear negative impacts on native seaweeds (Fucus serratus and Chondrus crispus) while enhancing the performance of S. muticum. This pattern was consistent across season indicating that acclimation to cooler ambient temperatures results in winter MHWs having significant impacts on native species. As climate warming advances, this may ultimately lead to changes in competitive interactions and potentially exclusion of native species, while invasive species may proliferate and become more conspicuous within temperate rocky shore environments.


Asunto(s)
Ecosistema , Algas Marinas , Cambio Climático , Especies Introducidas , Estaciones del Año
12.
JACC Basic Transl Sci ; 5(6): 602-615, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32613146

RESUMEN

Oxidative damage is implicated in atrial fibrillation (AF), but antioxidants are ineffective therapeutically. The authors tested the hypothesis that highly reactive lipid dicarbonyl metabolites, or isolevuglandins (IsoLGs), are principal drivers of AF during hypertension. In a hypertensive murine model and stretched atriomyocytes, the dicarbonyl scavenger 2-hydroxybenzylamine (2-HOBA) prevented IsoLG adducts and preamyloid oligomers (PAOs), and AF susceptibility, whereas the ineffective analog 4-hydroxybenzylamine (4-HOBA) had minimal effect. Natriuretic peptides generated cytotoxic oligomers, a process accelerated by IsoLGs, contributing to atrial PAO formation. These findings support the concept of pre-emptively scavenging reactive downstream oxidative stress mediators as a potential therapeutic approach to prevent AF.

13.
J Am Heart Assoc ; 8(21): e011902, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31662020

RESUMEN

Background Muscular dystrophy (MD) causes a progressive cardiomyopathy characterized by diffuse fibrosis, arrhythmia, heart failure, and early death. Activation of the thromboxane-prostanoid receptor (TPr) increases calcium transients in cardiomyocytes and is proarrhythmic and profibrotic. We hypothesized that TPr activation contributes to the cardiac phenotype of MD, and that TPr antagonism would improve cardiac fibrosis and function in preclinical models of MD. Methods and Results Three different mouse models of MD (mdx/utrn double knockout, second generation mdx/mTR double knockout, and delta-sarcoglycan knockout) were given normal drinking water or water containing 25 mg/kg per day of the TPr antagonist ifetroban, beginning at weaning. After 6 months (10 weeks for mdx/utrn double knockout), mice were evaluated for cardiac and skeletal muscle function before euthanization. There was a 100% survival rate of ifetroban-treated mice to the predetermined end point, compared with 60%, 43%, and 90% for mdx/utrn double knockout, mdx/mTR double knockout, and delta-sarcoglycan knockout mice, respectively. TPr antagonism improved cardiac output in mdx/utrn double knockout and mdx/mTR mice, and normalized fractional shortening, ejection fraction, and other parameters in delta-sarcoglycan knockout mice. Cardiac fibrosis in delta-sarcoglycan knockout was reduced with TPr antagonism, which also normalized cardiac expression of claudin-5 and neuronal nitric oxide synthase proteins and multiple signature genes of Duchenne MD. Conclusions TPr antagonism reduced cardiomyopathy and spontaneous death in mouse models of Duchenne and limb-girdle MD. Based on these studies, ifetroban and other TPr antagonists could be novel therapeutics for treatment of the cardiac phenotype in patients with MD.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/etiología , Distrofia Muscular de Duchenne/complicaciones , Oxazoles/uso terapéutico , Antagonistas de Prostaglandina/uso terapéutico , Receptores de Tromboxanos/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Distribución Aleatoria
14.
Arch Pathol Lab Med ; 143(4): 513-517, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30500295

RESUMEN

CONTEXT.­: Developing skills related to use of computer-based tools is critical for practicing genomic pathology. However, given the relative novelty of genomics education, residency programs may lack faculty members with adequate expertise and/or time to implement training. A virtual team-based learning (TBL) environment would make genomic pathology education available to more trainees. OBJECTIVE.­: To translate an extensively implemented in-person TBL genomic pathology workshop into a virtual environment and to evaluate both knowledge and skill acquisition. DESIGN.­: Using a novel interactive simulation approach, online modules were developed translating aspects of the TBL experience into the virtual environment with a goal of acquisition of necessary computer-related skills. The modules were evaluated at 10 postgraduate pathology training programs using a pre-post test design with participants deidentified. A postmodule anonymous survey obtained participant feedback on module quality and efficacy. RESULTS.­: There were 147 trainees who received an email request to voluntarily participate in the study. Of these, 43 trainees completed the pretest and 15 (35%) subsequently completed the posttest. Mean overall scores were 45% on the pretest compared with 70% on the posttest ( P < .001; effect size = 1.4). Posttest improvement of results was similar for questions testing acquisition of knowledge versus skills. Regarding the 19 participants who took the survey, 18 (95%) would recommend the modules to others and believed they met the stated objectives. CONCLUSIONS.­: A simulation-based approach allows motivated pathology trainees to acquire computer-related skills for practicing genomic pathology. Future work can explore efficacy in a nonvoluntary setting and adaptation to different specialties, learners, and computer tools.


Asunto(s)
Simulación por Computador , Educación de Postgrado en Medicina/métodos , Genómica/educación , Patología/educación , Humanos
15.
J Am Vet Med Assoc ; 252(12): 1521-1526, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29889635

RESUMEN

OBJECTIVE To quantify vitamin D3 (VitD3) concentrations in commercial dog foods and compare those concentrations with Association of American Feed Control Officials (AAFCO) recommendations and manufacturer-reported concentrations. DESIGN Cross-sectional study. SAMPLE 82 commercial dog foods. PROCEDURES Samples of commercially available dog foods were obtained from owners of healthy dogs in the Guelph, ON, Canada, area and owners of dogs that were patients at the Ontario Veterinary College Health Sciences Centre's Mona Campbell Centre for Animal Cancer. For each food, the VitD3 concentration was determined by high-performance liquid chromatography-tandem mass spectrometry, and adherence to AAFCO and National Research Council recommendations was assessed. Analyzed VitD3 concentrations were compared with manufacturer-reported VitD3 concentrations and between wet and dry foods, among AAFCO nutritional adequacy statements (nutrient profiles vs feeding trials and adult maintenance vs all life stages), between foods sold only by veterinarians and those sold over the counter, and between small and large manufacturers. RESULTS The analyzed VitD3 concentration was below both AAFCO and National Research Council recommendations for one sample and below the assay detection limit for another. Analyzed VitD3 concentrations did not differ significantly from manufacturer-reported VitD3 concentrations or between wet and dry foods, among foods with different AAFCO nutritional adequacy statements, between foods sold only by veterinarians and those sold over the counter, or between foods produced by small and large manufacturers. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that manufacturer-reported VitD3 concentrations were accurate and that dog owners can be confident that VitD3 intake is adequate for AAFCO-compliant commercial dog foods.


Asunto(s)
Alimentación Animal/análisis , Colecalciferol/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Estudios Transversales , Perros , Guías como Asunto , Valor Nutritivo , Sociedades Veterinarias , Estados Unidos
16.
Per Med ; 15(3): 199-208, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29843583

RESUMEN

Genomic medicine is transforming patient care. However, the speed of development has left a knowledge gap between discovery and effective implementation into clinical practice. Since 2010, the Training Residents in Genomics (TRIG) Working Group has found success in building a rigorous genomics curriculum with implementation tools aimed at pathology residents in postgraduate training years 1-4. Based on the TRIG model, the interprofessional Undergraduate Training in Genomics (UTRIG) Working Group was formed. Under the aegis of the Undergraduate Medical Educators Section of the Association of Pathology Chairs and representation from nine additional professional societies, UTRIG's collaborative goal is building medical student genomic literacy through development of a ready-to-use genomics curriculum. Key elements to the UTRIG curriculum are expert consensus-driven objectives, active learning methods, rigorous assessment and integration.


Asunto(s)
Educación de Pregrado en Medicina/métodos , Genómica/educación , Curriculum , Humanos , Modelos Educacionales , Médicos , Aprendizaje Basado en Problemas , Estudiantes de Medicina
17.
Nat Commun ; 9(1): 1700, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29703891

RESUMEN

Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare, but devastating genetic disease characterized by segmental premature aging, with cardiovascular disease being the main cause of death. Cells from HGPS patients accumulate progerin, a permanently farnesylated, toxic form of Lamin A, disrupting the nuclear shape and chromatin organization, leading to DNA-damage accumulation and senescence. Therapeutic approaches targeting farnesylation or aiming to reduce progerin levels have provided only partial health improvements. Recently, we identified Remodelin, a small-molecule agent that leads to amelioration of HGPS cellular defects through inhibition of the enzyme N-acetyltransferase 10 (NAT10). Here, we show the preclinical data demonstrating that targeting NAT10 in vivo, either via chemical inhibition or genetic depletion, significantly enhances the healthspan in a Lmna G609G HGPS mouse model. Collectively, the data provided here highlights NAT10 as a potential therapeutic target for HGPS.


Asunto(s)
Envejecimiento Prematuro/tratamiento farmacológico , Inestabilidad Genómica/efectos de los fármacos , Hidrazonas/farmacología , Acetiltransferasa A N-Terminal/antagonistas & inhibidores , Progeria/tratamiento farmacológico , Tiazoles/farmacología , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/mortalidad , Envejecimiento Prematuro/patología , Animales , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Modelos Animales de Enfermedad , Femenino , Inestabilidad Genómica/genética , Humanos , Hidrazonas/uso terapéutico , Estimación de Kaplan-Meier , Lamina Tipo A/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasas N-Terminal , Progeria/genética , Progeria/mortalidad , Progeria/patología , Tiazoles/uso terapéutico
18.
Ann Thorac Surg ; 105(4): 1144-1151, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29248417

RESUMEN

BACKGROUND: We hypothesized that gene expression profiles of mitral valve (MV) leaflets from patients with Barlow's disease (BD) are distinct from those with fibroelastic deficiency (FED). METHODS: MVs were obtained from patients with BD (7 men, 3 women; 61.4 ± 12.7 years old) or FED (6 men, 5 women; 54.5 ± 6.0 years old) undergoing operations for severe mitral regurgitation (MR). Normal MVs were obtained from 6 donor hearts unmatched for transplant (3 men, 3 women; 58.3 ± 7.5 years old), and gene expression was assessed using cDNA microarrays. Select transcripts were validated by quantitative reverse-transcription polymerase chain reaction, followed by an assessment of protein levels by immunostaining. RESULTS: The global gene expression profile for BD was clearly distinct from normal and FED groups. A total of 4,684 genes were significantly differential (fold-difference >1.5, p < 0.05) among the three groups, 1,363 of which were commonly altered in BD and FED compared with healthy individuals (eg TGFß2 [transforming growth factor ß2] and TGFß3 were equally upregulated in BD and FED). Most interesting were 329 BD-specific genes, including ADAMTS5 (a disintegrin-like and metalloprotease domain with thrombospondin-type 5), which was uniquely downregulated in BD based on microarrays and quantitative reverse-transcription polymerase chain reaction. Consistent with this finding, the ADAMTS5 substrate versican was increased in BD and conversely lower in FED. CONCLUSIONS: MV leaflets in BD and FED exhibit distinct gene expression patterns, suggesting different pathophysiologic mechanisms are involved in leaflet remodeling. Moreover, downregulation of ADAMTS5 in BD, along with the accumulation of its substrate versican in the valvular extracellular matrix, might contribute to leaflet thickening and enlargement.


Asunto(s)
Proteína ADAMTS5/genética , Insuficiencia de la Válvula Mitral/genética , Prolapso de la Válvula Mitral/genética , Versicanos/metabolismo , Proteína ADAMTS5/metabolismo , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Análisis por Micromatrices , Persona de Mediana Edad , Insuficiencia de la Válvula Mitral/metabolismo , Insuficiencia de la Válvula Mitral/patología , Prolapso de la Válvula Mitral/metabolismo , Prolapso de la Válvula Mitral/patología , Proteolisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcriptoma
19.
PLoS One ; 12(9): e0184620, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28886156

RESUMEN

Vascular smooth muscle cells (VSMCs) represent important modulators of plaque stability in advanced lesions. We previously reported that loss of small proline-rich repeat protein 3 (Sprr3), leads to VSMC apoptosis in a PI3K/Akt-dependent manner and accelerates lesion progression. Here, we investigated the role of Sprr3 in modulating plaque stability in hyperlipidemic ApoE-/- mice. We show that loss of Sprr3 increased necrotic core size and reduced cap collagen content of atheromas in brachiocephalic arteries with evidence of plaque rupture and development of intraluminal thrombi. Moreover, Sprr3-/-ApoE-/- mice developed advanced coronary artery lesions accompanied by intraplaque hemorrhage and left ventricle microinfarcts. SPRR3 is known to reduce VSMC survival in lesions by promoting their apoptosis. In addition, we demonstrated that Sprr3-/- VSMCs displayed reduced expression of procollagen in a PI3K/Akt dependent manner. SPRR3 loss also increased MMP gelatinase activity in lesions, and increased MMP2 expression, migration and contraction of VSMCs independently of PI3K/Akt. Consequently, Sprr3 represents the first described VSMC modulator of each of the critical features of cap stability, including VSMC numbers, collagen type I synthesis, and protease activity through Akt dependent and independent pathways.


Asunto(s)
Apolipoproteínas E/metabolismo , Proteínas Ricas en Prolina del Estrato Córneo/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Apolipoproteínas E/genética , Proteínas Ricas en Prolina del Estrato Córneo/genética , Femenino , Fibronectinas/metabolismo , Immunoblotting , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/citología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Transducción de Señal/fisiología
20.
Cell Host Microbe ; 22(4): 531-542.e8, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28943329

RESUMEN

Diet, and specifically dietary metals, can modify the risk of infection. However, the mechanisms by which manganese (Mn), a common dietary supplement, alters infection remain unexplored. We report that dietary Mn levels dictate the outcome of systemic infections caused by Staphylococcus aureus, a leading cause of bacterial endocarditis. Mice fed a high Mn diet display alterations in Mn levels and localization within infected tissues, and S. aureus virulence and infection of the heart are enhanced. Although the canonical mammalian Mn-sequestering protein calprotectin surrounds staphylococcal heart abscesses, calprotectin is not released into the abscess nidus and does not limit Mn in this organ. Consequently, excess Mn is bioavailable to S. aureus in the heart. Bioavailable Mn is utilized by S. aureus to detoxify reactive oxygen species and protect against neutrophil killing, enhancing fitness within the heart. Therefore, a single dietary modification overwhelms vital host antimicrobial strategies, leading to fatal staphylococcal infection.


Asunto(s)
Endocarditis Bacteriana/microbiología , Corazón/microbiología , Manganeso/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Absceso , Animales , Dieta , Modelos Animales de Enfermedad , Corazón/fisiopatología , Humanos , Complejo de Antígeno L1 de Leucocito/metabolismo , Hígado/microbiología , Hígado/fisiopatología , Manganeso/análisis , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...