Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Surg Res ; 301: 118-126, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38925098

RESUMEN

INTRODUCTION: Sleeve gastrectomy (SG), results in improvement in hypertension. We have previously published that rodent SG improves hypertension independent of weight loss associated with unique shifts in the gut microbiome. We tested if the gut microbiome directly improves blood pressure by performing fecal material transfer (FMT) from post-SG rats to surgery-naïve animals. METHODS: We performed SG or Sham surgery in male, Zucker rats (n = 6-7) with obesity. Stool was collected postop from surgical donors for treatment of recipient rats. Three nonsurgical groups received daily, oral consumption of SG stool, sham stool, or vehicle alone (Nutella) for 10 wk (n = 7-8). FMT treatment was assessed for effects on body weight, food intake, oral glucose tolerance, and blood pressure. Genomic deoxyribonucleic acid of stool from donor and recipient groups were sequenced by 16S ribosomal ribonucleic acid and analyzed for diversity, abundance, and importance. RESULTS: Ten weeks of SG-FMT treatment significantly lowered systolic blood pressures in surgery-naïve, recipient rats compared to vehicle treatment alone (126.8 ± 13.3 mmHg versus 151.8 ± 12.2 mmHg, P = 0.001). SG-FMT treatment also significantly altered beta diversity metrics compared to Sham-FMT and vehicle treatment. In random forest analysis, amplicon sequence variant level significantly predicted FMT group, P = 0.01. CONCLUSIONS: We have found a direct link between gut microbial changes after SG and regulation of blood pressure. Future mechanistic studies are required to learn what specific gut microbial changes are required to induce improvements in obesity-associated hypertension and translation to clinical, metabolic surgery.

2.
J Affect Disord ; 361: 528-535, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38914163

RESUMEN

BACKGROUND: Posttraumatic stress disorder (PTSD) is a common consequence of traumatic injury, yet certain biological factors contributing to PTSD are poorly understood. The gut microbiome may influence mental health outcomes, but its role in heterogeneous PTSD presentations requires elucidation. METHODS: Bacterial composition was examined in adults 2-4 years post-trauma with probable PTSD (n = 24) versus trauma-exposed controls without probable PTSD (n = 24). 16S rRNA sequencing and bioinformatic tools assessed microbial diversity and abundance. Relationships between taxa and PTSD symptom clusters were evaluated. RESULTS: No differences were found in overall microbial community structure between groups. The probable PTSD group exhibited significantly reduced Actinobacteriota and increased Verrucomicrobiota phylum abundance compared to controls. Specific taxa showed notable inverse associations with negative mood/cognition versus hyperarousal symptoms. Prevotella and Ruminococcaceae were negatively associated with negative mood but positively associated with hyperarousal. CONCLUSIONS: Results demonstrate microbial signatures of probable PTSD subtypes, highlighting the microbiome as a potential mediator of heterogeneous trauma psychopathology. Definition of PTSD microbial correlates provides a foundation for personalized psychobiotic interventions targeting predominant symptom profiles.


Asunto(s)
Microbioma Gastrointestinal , Trastornos por Estrés Postraumático , Sobrevivientes , Humanos , Trastornos por Estrés Postraumático/microbiología , Trastornos por Estrés Postraumático/psicología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Sobrevivientes/psicología , ARN Ribosómico 16S/genética , Heridas y Lesiones/psicología , Heridas y Lesiones/microbiología , Heridas y Lesiones/complicaciones , Estudios de Casos y Controles
3.
PLoS Genet ; 20(3): e1011215, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38512984

RESUMEN

Enterococci are commensal members of the gastrointestinal tract and also major nosocomial pathogens. They possess both intrinsic and acquired resistance to many antibiotics, including intrinsic resistance to cephalosporins that target bacterial cell wall synthesis. These antimicrobial resistance traits make enterococcal infections challenging to treat. Moreover, prior therapy with antibiotics, including broad-spectrum cephalosporins, promotes enterococcal proliferation in the gut, resulting in dissemination to other sites of the body and subsequent infection. As a result, a better understanding of mechanisms of cephalosporin resistance is needed to enable development of new therapies to treat or prevent enterococcal infections. We previously reported that flow of metabolites through the peptidoglycan biosynthesis pathway is one determinant of enterococcal cephalosporin resistance. One factor that has been implicated in regulating flow of metabolites into cell wall biosynthesis pathways of other Gram-positive bacteria is GlmR. In enterococci, GlmR is encoded as the middle gene of a predicted 3-gene operon along with YvcJ and YvcL, whose functions are poorly understood. Here we use genetics and biochemistry to investigate the function of the enterococcal yvcJ-glmR-yvcL gene cluster. Our results reveal that YvcL is a DNA-binding protein that regulates expression of the yvcJ-glmR-yvcL operon in response to cell wall stress. YvcJ and GlmR bind UDP-GlcNAc and reciprocally regulate cephalosporin resistance in E. faecalis, and binding of UDP-GlcNAc by YvcJ appears essential for its activity. Reciprocal regulation by YvcJ/GlmR is essential for fitness during exposure to cephalosporin stress. Additionally, our results indicate that enterococcal GlmR likely acts by a different mechanism than the previously studied GlmR of Bacillus subtilis, suggesting that the YvcJ/GlmR regulatory module has evolved unique targets in different species of bacteria.


Asunto(s)
Resistencia a las Cefalosporinas , Cefalosporinas , Cefalosporinas/farmacología , Cefalosporinas/metabolismo , Resistencia a las Cefalosporinas/genética , Antibacterianos/farmacología , Enterococcus faecalis/genética , Operón/genética , Uridina Difosfato/metabolismo
4.
J Pediatr Gastroenterol Nutr ; 78(4): 886-897, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38390691

RESUMEN

OBJECTIVE: Pediatric nonalcoholic fatty liver disease (NAFLD) is a growing problem, but its underlying mechanisms are poorly understood. We used transcriptomic reporter cell assays to investigate differences in transcriptional signatures induced in hepatocyte reporter cells by the sera of children with and without NAFLD. METHODS: We studied serum samples from 45 children with NAFLD and 28 children without NAFLD. The sera were used to induce gene expression in cultured HepaRG cells and RNA-sequencing was used to determine gene expression. Computational techniques were used to compare gene expression patterns. RESULTS: Sera from children with NAFLD induced the expression of 195 genes that were significantly differentially expressed in hepatocytes compared to controls with obesity. NAFLD was associated with increased expression of genes promoting inflammation, collagen synthesis, and extracellular matrix remodeling. Additionally, there was lower expression of genes involved in endobiotic and xenobiotic metabolism, and downregulation of peroxisome function, oxidative phosphorylation, and xenobiotic, bile acid, and fatty acid metabolism. A 13-gene signature, including upregulation of TREM1 and MMP1 and downregulation of CYP2C9, was consistently associated with all diagnostic categories of pediatric NAFLD. CONCLUSION: The extracellular milieu of sera from children with NAFLD induced specific gene profiles distinguishable by a hepatocyte reporter system. Circulating factors may contribute to inflammation and extracellular matrix remodeling and impair xenobiotic and endobiotic metabolism in pediatric NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Niño , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Xenobióticos/metabolismo , Hepatocitos , Inflamación/metabolismo , Células Cultivadas , Hígado/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...