Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115426

RESUMEN

PURPOSE: Therapy resistance is a major clinical hurdle in bone cancer treatment and seems to be largely driven by poorly understood microenvironmental factors. Recent evidence suggests a critical role for a unique subpopulation of mesenchymal stem cells with inflammatory features (iMSCs), though their origin and function remained unexplored. We demonstrate that cancer-secreted extracellular vesicles (EVs) trigger the development of iMSCs, which hinder therapy response in vivo, and set out to identify strategies to counteract their function. EXPERIMENTAL DESIGN: The role of iMSCs in therapy resistance was evaluated in an orthotopic xenograft mouse model of osteosarcoma. EV-induced alterations of the MSC transcriptome were analyzed and compared with scRNA-seq data of osteosarcoma and multiple myeloma patient biopsies. Functional assays identified EV components driving iMSC development. We assessed the efficacy of clinical drugs in blocking iMSC-induced resistance in vivo. RESULTS: We found that iMSCs are induced by interaction with cancer EVs and completely abrogate the antimetastatic effect of TGFb signaling inhibition. Importantly, EV-induced iMSCs faithfully recapitulate the inflammatory single-cell RNA signature of stromal cells enriched in multiple myeloma and osteosarcoma patient biopsies. Mechanistically, cancer EVs act through two distinct mechanisms. EV-associated TGFb induces IL6 production, while the EV-RNA cargo enhances TLR3-mediated chemokine production. We reveal that simultaneous blockade of downstream EV-activated pathways with ladarixin and tocilizumab disrupts metastasis formation and overcomes iMSC-induced resistance. CONCLUSIONS: Our observations establish iMSCs as major contributors to drug resistance, reveal EVs as physiological triggers of iMSC development and highlight a promising combination strategy to improve therapy response in bone cancer patients.

2.
Cell Rep ; 43(1): 113598, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38150364

RESUMEN

Functional interactions between cytotoxic T cells and tumor cells are central to anti-cancer immunity. However, our understanding of the proteins involved is limited. Here, we present HySic (hybrid quantification of stable isotope labeling by amino acids in cell culture [SILAC]-labeled interacting cells) as a method to quantify protein and phosphorylation dynamics between and within physically interacting cells. Using co-cultured T cells and tumor cells, we directly measure the proteome and phosphoproteome of engaged cells without the need for physical separation. We identify proteins whose abundance or activation status changes upon T cell:tumor cell interaction and validate our method with established signal transduction pathways including interferon γ (IFNγ) and tumor necrosis factor (TNF). Furthermore, we identify the RHO/RAC/PAK1 signaling pathway to be activated upon cell engagement and show that pharmacologic inhibition of PAK1 sensitizes tumor cells to T cell killing. Thus, HySic is a simple method to study rapid protein signaling dynamics in physically interacting cells that is easily extended to other biological systems.


Asunto(s)
Neoplasias , Fosfoproteínas , Humanos , Fosfoproteínas/metabolismo , Transducción de Señal , Comunicación Celular , Fosforilación , Marcaje Isotópico/métodos , Proteoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...