Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Blood ; 144(8): 809-821, 2024 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-38875504

RESUMEN

ABSTRACT: Epidemiological studies report opposing influences of infection on childhood B-cell acute lymphoblastic leukemia (B-ALL). Although infections in the first year of life appear to exert the largest impact on leukemia risk, the effect of early pathogen exposure on the fetal preleukemia cells (PLC) that lead to B-ALL has yet to be reported. Using cytomegalovirus (CMV) infection as a model early-life infection, we show that virus exposure within 1 week of birth induces profound depletion of transplanted E2A-PBX1 and hyperdiploid B-ALL cells in wild-type recipients and in situ-generated PLC in Eµ-ret mice. The age-dependent depletion of PLC results from an elevated STAT4-mediated cytokine response in neonates, with high levels of interleukin (IL)-12p40-driven interferon (IFN)-γ production inducing PLC death. Similar PLC depletion can be achieved in adult mice by impairing viral clearance. These findings provide mechanistic support for potential inhibitory effects of early-life infection on B-ALL progression and could inform novel therapeutic or preventive strategies.


Asunto(s)
Modelos Animales de Enfermedad , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Animales , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Infecciones por Citomegalovirus , Preleucemia/genética , Preleucemia/patología , Ratones Endogámicos C57BL , Animales Recién Nacidos , Diploidia
2.
Biopreserv Biobank ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686645

RESUMEN

Density gradient centrifugation is a conventional technique widely utilized to isolate bone marrow mononuclear cells (BM-MNC) from bone marrow (BM) aspirates obtained from pediatric B-cell acute lymphoblastic leukemia (B-ALL) patients. Nevertheless, this technique achieves incomplete recovery of mononuclear cells and is relatively time-consuming and expensive. Given that B-ALL is the most common childhood malignancy, alternative methods for processing B-ALL samples may be more cost-effective. In this pilot study, we use several readouts, including immune phenotype, cell viability, and leukemia-initiating capacity in immune-deficient mice, to directly compare the density gradient centrifugation and buffy coat processing methods. Our findings indicate that buffy coat isolation yields comparable BM-MNC product in terms of both immune and leukemia cell content and could provide a viable, lower cost alternative for biobanks processing pediatric leukemia samples.

3.
Leukemia ; 38(5): 969-980, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38519798

RESUMEN

The presence of supernumerary chromosomes is the only abnormality shared by all patients diagnosed with high-hyperdiploid B cell acute lymphoblastic leukemia (HD-ALL). Despite being the most frequently diagnosed pediatric leukemia, the lack of clonal molecular lesions and complete absence of appropriate experimental models have impeded the elucidation of HD-ALL leukemogenesis. Here, we report that for 23 leukemia samples isolated from moribund Eµ-Ret mice, all were characterized by non-random chromosomal gains, involving combinations of trisomy 9, 12, 14, 15, and 17. With a median gain of three chromosomes, leukemia emerged after a prolonged latency from a preleukemic B cell precursor cell population displaying more diverse aneuploidy. Transition from preleukemia to overt disease in Eµ-Ret mice is associated with acquisition of heterogeneous genomic abnormalities affecting the expression of genes implicated in pediatric B-ALL. The development of abnormal centrosomes in parallel with aneuploidy renders both preleukemic and leukemic cells sensitive to inhibitors of centrosome clustering, enabling targeted in vivo depletion of leukemia-propagating cells. This study reveals the Eµ-Ret mouse to be a novel tool for investigating HD-ALL leukemogenesis, including supervision and selection of preleukemic aneuploid clones by the immune system and identification of vulnerabilities that could be targeted to prevent relapse.


Asunto(s)
Modelos Animales de Enfermedad , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Animales , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Aneuploidia , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Centrosoma/patología , Diploidia
4.
Blood Adv ; 7(22): 7087-7099, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37824841

RESUMEN

Common infections have long been proposed to play a role in the development of pediatric B-cell acute lymphoblastic leukemia (B-ALL). However, epidemiologic studies report contradictory effects of infection exposure on subsequent B-ALL risk, and no specific pathogen has been definitively linked to the disease. A unifying mechanism to explain the divergent outcomes could inform disease prevention strategies. We previously reported that the pattern recognition receptor (PRR) ligand Poly(I:C) exerted effects on B-ALL cells that were distinct from those observed with other nucleic acid-based PRR ligands. Here, using multiple double-stranded RNA (dsRNA) moieties, we show that the overall outcome of exposure to Poly(I:C) reflects the balance of opposing responses induced by its ligation to endosomal and cytoplasmic receptors. This PRR response biology is shared between mouse and human B-ALL and can increase leukemia-initiating cell burden in vivo during the preleukemia phase of B-ALL, primarily through tumor necrosis factor α signaling. The age of the responding immune system further influences the impact of dsRNA exposure on B-ALL cells in both mouse and human settings. Overall, our study demonstrates that potentially proleukemic and antileukemic effects can each be generated by the stimulation of pathogen recognition pathways and indicates a mechanistic explanation for the contrasting epidemiologic associations reported for infection exposure and B-ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Transducción de Señal , Ratones , Humanos , Animales , Niño , Ligandos , ARN Bicatenario/farmacología , Linfocitos B
5.
Vaccines (Basel) ; 10(10)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36298634

RESUMEN

The onset of an adaptive immune response provides the signals required for differentiation of antigen-specific lymphocytes into effector cells and imprinting of these cells for re-circulation to the most appropriate anatomical site (i.e., homing). Lymphocyte homing is governed by the expression of tissue-specific lymphocyte homing receptors that bind to unique tissue-specific ligands on endothelial cells. In this study, a whole-parasite malaria vaccine (radiation-attenuated sporozoites (RAS)) was used as a model system to establish homing receptor signatures induced by the parasite delivered through mosquito bite to provide a benchmark of desirable homing receptors for malaria vaccine developers. This immunization regimen resulted in the priming of antigen-specific B cells and CD8+ T cells for homing primarily to the skin and T/B cell compartments of secondary lymphoid organs. Infection with live sporozoites, however, triggers the upregulation of homing receptor for the liver and the skin, demonstrating that there is a difference in the signal provided by attenuated vs. live sporozoites. This is the first report on imprinting of homing routes by Plasmodium sporozoites and, surprisingly, it also points to additional, yet to be identified, signals provided by live parasites that prime lymphocytes for homing to the liver. The data also demonstrate the utility of this method for assessing the potential of vaccine formulations to direct antigen-specific lymphocytes to the most relevant anatomical site, thus potentially impacting vaccine efficacy.

6.
Vaccines (Basel) ; 10(1)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35062785

RESUMEN

Immune correlates of protection remain elusive for most vaccines. An identified immune correlate would accelerate the down-selection of vaccine formulations by reducing the need for human pathogen challenge studies that are currently required to determine vaccine efficacy. Immunization via mosquito-delivered, radiation-attenuated P. falciparum sporozoites (IMRAS) is a well-established model for efficacious malaria vaccines, inducing greater than 90% sterile immunity. The current immunoprofiling study utilized samples from a clinical trial in which vaccine dosing was adjusted to achieve only 50% protection, thus enabling a comparison between protective and non-protective immune signatures. In-depth immunoprofiling was conducted by assessing a wide range of antigen-specific serological and cellular parameters and applying our newly developed computational tools, including machine learning. The computational component of the study pinpointed previously un-identified cellular T cell subsets (namely, TNFα-secreting CD8+CXCR3-CCR6- T cells, IFNγ-secreting CD8+CCR6+ T cells and TNFα/FNγ-secreting CD4+CXCR3-CCR6- T cells) and B cell subsets (i.e., CD19+CD24hiCD38hiCD69+ transitional B cells) as important factors predictive of protection (92% accuracy). Our study emphasizes the need for in-depth immunoprofiling and subsequent data integration with computational tools to identify immune correlates of protection. The described process of computational data analysis is applicable to other disease and vaccine models.

7.
J Infect Dis ; 224(7): 1128-1138, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32236404

RESUMEN

BACKGROUND: RTS,S is the leading malaria vaccine candidate but only confers partial efficacy against malaria in children. RTS,S is based on the major Plasmodium falciparum sporozoite surface antigen, circumsporozoite protein (CSP). The induction of anti-CSP antibodies is important for protection; however, it is unclear how these protective antibodies function. METHODS: We quantified the induction of functional anti-CSP antibody responses in healthy malaria-naive adults (N = 45) vaccinated with RTS,S/AS01. This included the ability to mediate effector functions via the fragment crystallizable (Fc) region, such as interacting with human complement proteins and Fcγ-receptors (FcγRs) that are expressed on immune cells, which promote various immunological functions. RESULTS: Our major findings were (1) RTS,S-induced antibodies mediated Fc-dependent effector functions, (2) functional antibodies were generally highest after the second vaccine dose, (3) functional antibodies targeted multiple regions of CSP, (4) participants with higher levels of functional antibodies had a reduced probability of developing parasitemia following homologous challenge (P < .05), and (5) nonprotected subjects had higher levels of anti-CSP IgM. CONCLUSIONS: Our data suggest a role for Fc-dependent antibody effector functions in RTS,S-induced immunity. Enhancing the induction of these functional activities may be a strategy to improve the protective efficacy of RTS,S or other malaria vaccines. CLINICAL TRIALS REGISTRATION: NCT00075049.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Vacunas contra la Malaria/administración & dosificación , Malaria/prevención & control , Eficacia de las Vacunas , Antígenos de Protozoos , Humanos , Malaria/sangre , Vacunas contra la Malaria/inmunología , Proteínas Protozoarias
8.
Hum Vaccin Immunother ; 16(2): 400-411, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31589550

RESUMEN

Adjuvants produce complex, but often subtle, effects on vaccine-induced immune responses that, nonetheless, play a critical role in vaccine efficacy. In-depth profiling of vaccine-induced cytokine, cellular, and antibody responses ("immunoprofiling") combined with machine-learning holds the promise of identifying adjuvant-specific immune response characteristics that can guide rational adjuvant selection. Here, we profiled human immune responses induced by vaccines adjuvanted with two similar, clinically relevant adjuvants, AS01B and AS02A, and identified key distinguishing characteristics, or immune signatures, they imprint on vaccine-induced immunity. Samples for this side-by-side comparison were from malaria-naïve individuals who had received a recombinant malaria subunit vaccine (AMA-1) that targets the pre-erythrocytic stage of the parasite. Both adjuvant formulations contain the same immunostimulatory components, QS21 and MPL, thus this study reveals the subtle impact that adjuvant formulation has on immunogenicity. Adjuvant-mediated immune signatures were established through a two-step approach: First, we generated a broad immunoprofile (serological, functional and cellular characterization of vaccine-induced responses). Second, we integrated the immunoprofiling data and identify what combination of immune features was most clearly able to distinguish vaccine-induced responses by adjuvant using machine learning. The computational analysis revealed statistically significant differences in cellular and antibody responses between cohorts and identified a combination of immune features that was able to distinguish subjects by adjuvant with 71% accuracy. Moreover, the in-depth characterization demonstrated an unexpected induction of CD8+ T cells by the recombinant subunit vaccine, which is rare and highly relevant for future vaccine design.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Adyuvantes Inmunológicos , Anticuerpos Antiprotozoarios , Linfocitos T CD8-positivos , Humanos , Aprendizaje Automático , Malaria Falciparum/prevención & control , Plasmodium falciparum , Vacunas Sintéticas
9.
Malar J ; 18(1): 186, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31142328

RESUMEN

BACKGROUND: Whole parasite vaccination is an efficacious strategy to induce sterile immunity and to prevent malaria transmission. Understanding the mechanism and response of immune cells to vaccines plays a critical role in deciphering correlates of protection against infection and disease. Immunoassays, such as ELISpot, are commonly used to assess the immunogenicity of vaccines towards T cells and B cells. To date, these assays only analyse responses to specific antigens since they are based on recombinant parasite-derived proteins or peptides. There is the need for an agnostic approach that allows the evaluation of all sporozoite-associated antigens. METHODS: ELISpot plates coated with a defined amount of lysed Plasmodium falciparum sporozoites were used to assess the frequency of sporozoite-specific B cells in peripheral blood mononuclear cells from donors immunized with either a recombinant malaria vaccine or irradiated sporozoites. RESULTS: This report describes the assay conditions for a specific and sensitive sporozoite-based B cell ELISpot assay. The assay development considers the quality of sporozoite preparation as well as the detection threshold of the frequency of antigen-specific B cells. The assay enables the detection of sporozoite-specific IgM and IgG-producing B cells. Moreover, the assay can detect sporozoite-reactive B cells from subjects that were either vaccinated with the radiation attenuated sporozoite vaccine or a recombinant pre-erythrocytic vaccine. CONCLUSION: The newly developed sporozoite-based B cell ELISpot enables the monitoring of changes in the frequency of sporozoite-specific B cells. Applying this assay to assess the potency of vaccination regimens or seasonal changes in B cell populations from subjects residing in malaria-endemic areas will provide an opportunity to gain insight into immune mechanisms involved in protection and/or disease.


Asunto(s)
Linfocitos B/inmunología , Ensayo de Immunospot Ligado a Enzimas , Vacunas contra la Malaria/inmunología , Esporozoítos/inmunología , Esporozoítos/efectos de la radiación , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Ensayos Clínicos como Asunto , Humanos , Leucocitos Mononucleares/inmunología , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Sensibilidad y Especificidad , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología
10.
J Immunol Methods ; 468: 29-34, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30910536

RESUMEN

Immunoglobulin M (IgM) is the first antibody induced after the onset of an adaptive immune response against a pathogen or vaccine. Serological assays play a central role in evaluating these adaptive immunological responses. Such assays are not only crucial for the assessment of vaccine immunogenicity, but also inform on exposure to pathogens and cross-reactivity with other viruses. To date, there is no ELISA-based assay available that measures IgM responses against Zaire Ebola virus (ZEBOV). To address this critical need, our laboratory has developed a novel immunoassay capable of detecting total IgM against ZEBOV glycoprotein in serum samples from individuals exposed to the antigen through infection or vaccination. Here, we describe a sensitive, high-throughput, and inexpensive assay that can be performed in any laboratory. The performance criteria of the newly developed ZEBOV glycoprotein-based IgM ELISA were assessed using antisera collected from human patients immunized with the rVSVΔG-ZEBOV-GP vaccine being tested in a phase 1 clinical trial. This assay demonstrates high specificity and sensitivity and will also be a valuable tool in the mission to find immune correlates of protection for a successful Ebola vaccine.


Asunto(s)
Anticuerpos Antivirales/sangre , Vacunas contra el Virus del Ébola/administración & dosificación , Ebolavirus/inmunología , Ensayo de Inmunoadsorción Enzimática , Fiebre Hemorrágica Ebola/prevención & control , Inmunogenicidad Vacunal , Inmunoglobulina M/sangre , Pruebas Serológicas , Biomarcadores/sangre , Ensayos Clínicos Fase I como Asunto , Vacunas contra el Virus del Ébola/inmunología , Fiebre Hemorrágica Ebola/sangre , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Humanos , Inmunización , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Factores de Tiempo , Resultado del Tratamiento
11.
Sci Rep ; 8(1): 17508, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30504893

RESUMEN

Adjuvants have long been critical components of vaccines, but the exact mechanisms of their action and precisely how they alter or enhance vaccine-induced immune responses are often unclear. In this study, we used broad immunoprofiling of antibody, cellular, and cytokine responses, combined with data integration and machine learning to gain insight into the impact of different adjuvant formulations on vaccine-induced immune responses. A Self-Assembling Protein Nanoparticles (SAPN) presenting the malarial circumsporozoite protein (CSP) was used as a model vaccine, adjuvanted with three different liposomal formulations: liposome plus Alum (ALFA), liposome plus QS21 (ALFQ), and both (ALFQA). Using a computational approach to integrate the immunoprofiling data, we identified distinct vaccine-induced immune responses and developed a multivariate model that could predict the adjuvant condition from immune response data alone with 92% accuracy (p = 0.003). The data integration also revealed that commonly used readouts (i.e. serology, frequency of T cells producing IFN-γ, IL2, TNFα) missed important differences between adjuvants. In summary, broad immune-profiling in combination with machine learning methods enabled the reliable and clear definition of immune signatures for different adjuvant formulations, providing a means for quantitatively characterizing the complex roles that adjuvants can play in vaccine-induced immunity. The approach described here provides a powerful tool for identifying potential immune correlates of protection, a prerequisite for the rational pairing of vaccines candidates and adjuvants.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Aprendizaje Automático , Adyuvantes Inmunológicos/administración & dosificación , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Citocinas/biosíntesis , Citocinas/sangre , Relación Dosis-Respuesta Inmunológica , Inmunidad Celular , Liposomas , Macaca mulatta , Vacunas/administración & dosificación , Vacunas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...