Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(7): e1012335, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39038049

RESUMEN

The human polyomavirus JCPyV is an opportunistic pathogen that infects greater than 60% of the world's population. The virus establishes a persistent and asymptomatic infection in the urogenital system but can cause a fatal demyelinating disease in immunosuppressed or immunomodulated patients following invasion of the CNS. The mechanisms responsible for JCPyV invasion into CNS tissues are not known but direct invasion from the blood to the cerebral spinal fluid via the choroid plexus has been hypothesized. To study the potential of the choroid plexus as a site of neuroinvasion, we used an adult human choroid plexus epithelial cell line to model the blood-cerebrospinal fluid (B-CSF) barrier in a transwell system. We found that these cells formed a highly restrictive barrier to virus penetration either as free virus or as virus associated with extracellular vesicles (EVJC+). The restriction was not absolute and small amounts of virus or EVJC+ penetrated and were able to establish foci of infection in primary astrocytes. Disruption of the barrier with capsaicin did not increase virus or EVJC+ penetration leading us to hypothesize that virus and EVJC+ were highly cell-associated and crossed the barrier by an active process. An inhibitor of macropinocytosis increased virus penetration from the basolateral (blood side) to the apical side (CSF side). In contrast, inhibitors of clathrin and raft dependent transcytosis reduced virus transport from the basolateral to the apical side of the barrier. None of the drugs inhibited apical to basolateral transport suggesting directionality. Pretreatment with cyclosporin A, an inhibitor of P-gp, MRP2 and BCRP multidrug resistance transporters, restored viral penetration in cells treated with raft and clathrin dependent transcytosis inhibitors. Because choroid plexus epithelial cells are known to be susceptible to JCPyV infection both in vitro and in vivo we also examined the release of infectious virus from the barrier. We found that virus was preferentially released from the cells into the apical (CSF) chamber. These data show clearly that there are two mechanisms of penetration, direct transcytosis which is capable of seeding the CSF with small amounts of virus, and infection followed by directional release of infectious virions into the CSF compartment.


Asunto(s)
Barrera Hematoencefálica , Plexo Coroideo , Virus JC , Humanos , Barrera Hematoencefálica/virología , Barrera Hematoencefálica/metabolismo , Plexo Coroideo/virología , Plexo Coroideo/metabolismo , Virus JC/fisiología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/virología , Animales , Astrocitos/virología , Astrocitos/metabolismo , Línea Celular , Células Epiteliales/virología , Células Epiteliales/metabolismo , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos
2.
Microbiol Spectr ; : e0062824, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874395

RESUMEN

The human polyomavirus, JCPyV, establishes a lifelong persistent infection in the peripheral organs of a majority of the human population worldwide. Patients who are immunocompromised due to underlying infections, cancer, or to immunomodulatory treatments for autoimmune disease are at risk for developing progressive multifocal leukoencephalopathy (PML) when the virus invades the CNS and infects macroglial cells in the brain parenchyma. It is not yet known how the virus enters the CNS to cause disease. The blood-choroid plexus barrier is a potential site of virus invasion as the cells that make up this barrier are known to be infected with virus both in vivo and in vitro. To understand the effects of virus infection on these cells we challenged primary human choroid plexus epithelial cells with JCPyV and profiled changes in host gene expression. We found that viral infection induced the expression of proinflammatory chemokines and downregulated junctional proteins essential for maintaining blood-CSF and blood-brain barrier function. These data contribute to our understanding of how JCPyV infection of the choroid plexus can modulate the host cell response to neuroinvasive pathogens. IMPORTANCE: The human polyomavirus, JCPyV, causes a rapidly progressing demyelinating disease in the CNS of patients whose immune systems are compromised. JCPyV infection has been demonstrated in the choroid plexus both in vivo and in vitro and this highly vascularized organ may be important in viral invasion of brain parenchyma. Our data show that infection of primary choroid plexus epithelial cells results in increased expression of pro-inflammatory chemokines and downregulation of critical junctional proteins that maintain the blood-CSF barrier. These data have direct implications for mechanisms used by JCPyV to invade the CNS and cause neurological disease.

4.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239927

RESUMEN

Progressive multifocal leukoencephalopathy (PML) is a rare demyelinating disease caused by infection with JC Polyomavirus (JCPyV). Despite the identification of the disease and isolation of the causative pathogen over fifty years ago, no antiviral treatments or prophylactic vaccines exist. Disease onset is usually associated with immunosuppression, and current treatment guidelines are limited to restoring immune function. This review summarizes the drugs and small molecules that have been shown to inhibit JCPyV infection and spread. Paying attention to historical developments in the field, we discuss key steps of the virus lifecycle and antivirals known to inhibit each event. We review current obstacles in PML drug discovery, including the difficulties associated with compound penetrance into the central nervous system. We also summarize recent findings in our laboratory regarding the potent anti-JCPyV activity of a novel compound that antagonizes the virus-induced signaling events necessary to establish a productive infection. Understanding the current panel of antiviral compounds will help center the field for future drug discovery efforts.


Asunto(s)
Virus JC , Leucoencefalopatía Multifocal Progresiva , Infecciones por Polyomavirus , Humanos , Leucoencefalopatía Multifocal Progresiva/tratamiento farmacológico , Virus JC/fisiología , Transducción de Señal
5.
mBio ; 14(2): e0358322, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36786589

RESUMEN

JC polyomavirus (JCPyV) is a ubiquitous, double-stranded DNA virus that causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML) in immunocompromised patients. Current treatments for PML are limited to immune reconstitution, and no effective antivirals exist. In this report, we show that the oxindole GW-5074 (3-(3,5-dibromo-4-hydroxybenzylidene)-5-iodoindolin-2-one) reduces JCPyV infection in primary and immortalized cells. This compound potently inhibits virus spread, which suggests that it could control infection in PML patients. We demonstrate that GW-5074 inhibits endogenous ERK phosphorylation, and that JCPyV infection in GW-5074-treated cells cannot be rescued with ERK agonists, which indicates that the antiviral mechanism may involve its antagonistic effects on MAPK-ERK signaling. Importantly, GW-5074 exceeds thresholds of common pharmacological parameters that identify promising compounds for further development. This MAPK-ERK antagonist warrants further investigation as a potential treatment for PML. IMPORTANCE Human polyomaviruses, such as JCPyV and BKPyV, cause significant morbidity and mortality in immunocompromised or immunomodulated patients. There are no treatments for polyomavirus-induced diseases other than restoration of immune function. We discovered that the oxindole GW-5074 potently inhibits infection by both JCPyV and BKPyV. Further optimization of this compound could result in the development of antiviral therapies for polyomavirus-induced diseases.


Asunto(s)
Virus JC , Leucoencefalopatía Multifocal Progresiva , Infecciones por Polyomavirus , Poliomavirus , Humanos , Oxindoles/farmacología , Leucoencefalopatía Multifocal Progresiva/tratamiento farmacológico , Leucoencefalopatía Multifocal Progresiva/genética , Virus JC/genética , Sistema de Señalización de MAP Quinasas , Antivirales
6.
J Virol ; 97(2): e0008923, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36700640

RESUMEN

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Asunto(s)
Investigación , Virología , Virosis , Humanos , COVID-19/prevención & control , Difusión de la Información , Pandemias/prevención & control , Formulación de Políticas , Investigación/normas , Investigación/tendencias , SARS-CoV-2 , Virología/normas , Virología/tendencias , Virosis/prevención & control , Virosis/virología , Virus
7.
mBio ; 14(1): e0018823, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36700642

RESUMEN

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Asunto(s)
COVID-19 , Infecciones del Sistema Respiratorio , Virus , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Pandemias/prevención & control , Virus/genética
8.
mSphere ; 8(2): e0003423, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36700653

RESUMEN

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Asunto(s)
COVID-19 , Virus , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Pandemias/prevención & control , Antivirales
9.
Viruses ; 14(6)2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35746603

RESUMEN

JC polyomavirus (JCPyV) is a small non-enveloped virus that establishes lifelong, persistent infection in most of the adult population. Immune-competent patients are generally asymptomatic, but immune-compromised and immune-suppressed patients are at risk for the neurodegenerative disease progressive multifocal leukoencephalopathy (PML). Studies with purified JCPyV found it undergoes receptor-dependent infectious entry requiring both lactoseries tetrasaccharide C (LSTc) attachment and 5-hydroxytryptamine type 2 entry receptors. Subsequent work discovered the major targets of JCPyV infection in the central nervous system (oligodendrocytes and astrocytes) do not express the required attachment receptor at detectable levels, virus could not bind these cells in tissue sections, and viral quasi-species harboring recurrent mutations in the binding pocket for attachment. While several research groups found evidence JCPyV can use novel receptors for infection, it was also discovered that extracellular vesicles (EVs) can mediate receptor independent JCPyV infection. Recent work also found JCPyV associated EVs include both exosomes and secretory autophagosomes. EVs effectively present a means of immune evasion and increased tissue tropism that complicates viral studies and anti-viral therapeutics. This review focuses on JCPyV infection mechanisms and EV associated and outlines key areas of study necessary to understand the interplay between virus and extracellular vesicles.


Asunto(s)
Virus JC , Leucoencefalopatía Multifocal Progresiva , Enfermedades Neurodegenerativas , Infecciones por Polyomavirus , Astrocitos/metabolismo , Humanos , Virus JC/genética
10.
J Extracell Biol ; 1(5)2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-36688929

RESUMEN

JC polyomavirus (JCPyV) is a small, non-enveloped virus that persists in the kidney in about half the adult population. In severely immune-compromised individuals JCPyV causes the neurodegenerative disease progressive multifocal leukoencephalopathy (PML) in the brain. JCPyV has been shown to infect cells by both direct and indirect mechanisms, the latter involving extracellular vesicle (EV) mediated infection. While direct mechanisms of infection are well studied indirect EV mediated mechanisms are poorly understood. Using a combination of chemical and genetic approaches we show that several overlapping intracellular pathways are responsible for the biogenesis of virus containing EV. Here we show that targeting neutral sphingomyelinase 2 (nSMase2) with the drug cambinol decreased the spread of JCPyV over several viral life cycles. Genetic depletion of nSMase2 by either shRNA or CRISPR/Cas9 reduced EV-mediated infection. Individual knockdown of seven ESCRT-related proteins including HGS, ALIX, TSG101, VPS25, VPS20, CHMP4A, and VPS4A did not significantly reduce JCPyV associated EV (JCPyV(+) EV) infectivity, whereas knockdown of the tetraspanins CD9 and CD81 or trafficking and/or secretory autophagy-related proteins RAB8A, RAB27A, and GRASP65 all significantly reduced the spread of JCPyV and decreased EV-mediated infection. These findings point to a role for exosomes and secretory autophagosomes in the biogenesis of JCPyV associated EVs with specific roles for nSMase2, CD9, CD81, RAB8A, RAB27A, and GRASP65 proteins.

11.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34575975

RESUMEN

Several classes of immunomodulators are used for treating relapsing-remitting multiple sclerosis (RRMS). Most of these disease-modifying therapies, except teriflunomide, carry the risk of progressive multifocal leukoencephalopathy (PML), a severely debilitating, often fatal virus-induced demyelinating disease. Because teriflunomide has been shown to have antiviral activity against DNA viruses, we investigated whether treatment of cells with teriflunomide inhibits infection and spread of JC polyomavirus (JCPyV), the causative agent of PML. Treatment of choroid plexus epithelial cells and astrocytes with teriflunomide reduced JCPyV infection and spread. We also used droplet digital PCR to quantify JCPyV DNA associated with extracellular vesicles isolated from RRMS patients. We detected JCPyV DNA in all patients with confirmed PML diagnosis (n = 2), and in six natalizumab-treated (n = 12), two teriflunomide-treated (n = 7), and two nonimmunomodulated (n = 2) patients. Of the 21 patients, 12 (57%) had detectable JCPyV in either plasma or serum. CSF was uniformly negative for JCPyV. Isolation of extracellular vesicles did not increase the level of detection of JCPyV DNA versus bulk unprocessed biofluid. Overall, our study demonstrated an effect of teriflunomide inhibiting JCPyV infection and spread in glial and choroid plexus epithelial cells. Larger studies using patient samples are needed to correlate these in vitro findings with patient data.


Asunto(s)
Crotonatos/farmacología , Virus ADN/efectos de los fármacos , Hidroxibutiratos/farmacología , Leucoencefalopatía Multifocal Progresiva/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Neuroglía/efectos de los fármacos , Nitrilos/farmacología , Toluidinas/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/virología , Línea Celular , Plexo Coroideo/efectos de los fármacos , Plexo Coroideo/virología , Virus ADN/patogenicidad , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/virología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/virología , Humanos , Factores Inmunológicos/efectos adversos , Factores Inmunológicos/uso terapéutico , Virus JC/efectos de los fármacos , Virus JC/patogenicidad , Leucoencefalopatía Multifocal Progresiva/inducido químicamente , Leucoencefalopatía Multifocal Progresiva/patología , Leucoencefalopatía Multifocal Progresiva/virología , Esclerosis Múltiple Recurrente-Remitente/genética , Esclerosis Múltiple Recurrente-Remitente/patología , Esclerosis Múltiple Recurrente-Remitente/virología , Neuroglía/virología , Virosis/tratamiento farmacológico , Virosis/genética , Virosis/virología
12.
Oncotarget ; 11(46): 4201-4223, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33245731

RESUMEN

COVID-19 affects vulnerable populations including elderly individuals and patients with cancer. Natural Killer (NK) cells and innate-immune TRAIL suppress transformed and virally-infected cells. ACE2, and TMPRSS2 protease promote SARS-CoV-2 infectivity, while inflammatory cytokines IL-6, or G-CSF worsen COVID-19 severity. We show MEK inhibitors (MEKi) VS-6766, trametinib and selumetinib reduce ACE2 expression in human cells. In some human cells, remdesivir increases ACE2-promoter luciferase-reporter expression, ACE2 mRNA and protein, and ACE2 expression is attenuated by MEKi. In serum-deprived and stimulated cells treated with remdesivir and MEKi we observed correlations between pRB, pERK, and ACE2 expression further supporting role of proliferative state and MAPK pathway in ACE2 regulation. We show elevated cytokines in COVID-19-(+) patient plasma (N = 9) versus control (N = 11). TMPRSS2, inflammatory cytokines G-CSF, M-CSF, IL-1α, IL-6 and MCP-1 are suppressed by MEKi alone or with remdesivir. We observed MEKi stimulation of NK-cell killing of target-cells, without suppressing TRAIL-mediated cytotoxicity. Pseudotyped SARS-CoV-2 virus with a lentiviral core and SARS-CoV-2 D614 or G614 SPIKE (S) protein on its envelope infected human bronchial epithelial cells, small airway epithelial cells, or lung cancer cells and MEKi suppressed infectivity of the pseudovirus. We show a drug class-effect with MEKi to stimulate NK cells, inhibit inflammatory cytokines and block host-factors for SARS-CoV-2 infection leading also to suppression of SARS-CoV-2-S pseudovirus infection of human cells. MEKi may attenuate SARS-CoV-2 infection to allow immune responses and antiviral agents to control disease progression.

13.
J Virol ; 95(2)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33115878

RESUMEN

BK polyomavirus (BKPyV) is a ubiquitous human pathogen, with over 80% of adults worldwide being persistently infected. BKPyV infection is usually asymptomatic in healthy people; however, it causes polyomavirus-associated nephropathy in renal transplant patients and hemorrhagic cystitis in bone marrow transplant patients. BKPyV has a circular, double-stranded DNA genome that is divided genetically into three parts: an early region, a late region, and a noncoding control region (NCCR). The NCCR contains the viral DNA replication origin and cis-acting elements regulating viral early and late gene expression. It was previously shown that a BKPyV microRNA (miRNA) expressed from the late strand regulates viral large-T-antigen expression and limits the replication capacity of archetype BKPyV. A major unanswered question in the field is how expression of the viral miRNA is regulated. Typically, miRNA is expressed from introns in cellular genes, but there is no intron readily apparent in BKPyV from which the miRNA could derive. Here, we provide evidence for primary RNA transcripts that circle the genome more than once and include the NCCR. We identified splice junctions resulting from splicing of primary transcripts circling the genome more than once, and Sanger sequencing of reverse transcription-PCR (RT-PCR) products indicates that there are viral transcripts that circle the genome up to four times. Our data suggest that the miRNA is expressed from an intron spliced out of these greater-than-genome-size primary transcripts.IMPORTANCE The BK polyomavirus (BKPyV) miRNA plays an important role in regulating viral large-T-antigen expression and limiting the replication of archetype BKPyV, suggesting that the miRNA regulates BKPyV persistence. However, how miRNA expression is regulated is poorly understood. Here, we present evidence that the miRNA is expressed from an intron that is generated by RNA polymerase II transcribing the circular viral genome more than once. We identified splice junctions that could be generated only from primary transcripts that contain tandemly repeated copies of the viral genome. The results indicate another way in which viruses optimize expression of their genes using limited coding capacity.


Asunto(s)
Virus BK/genética , Regulación Viral de la Expresión Génica , MicroARNs/genética , ARN Viral/genética , Genoma Viral/genética , Humanos , Intrones/genética , MicroARNs/metabolismo , Sitios de Empalme de ARN , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transcripción Genética
14.
Viruses ; 12(10)2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092168

RESUMEN

Polyomaviruses are small, non-enveloped DNA tumor viruses that cause serious disease in immunosuppressed people, including progressive multifocal leukoencephalopathy (PML) in patients infected with JC polyomavirus, but the molecular events mediating polyomavirus entry are poorly understood. Through genetic knockdown approaches, we identified phosphoinositide 3'-kinase γ (PI3Kγ) and its regulatory subunit PIK3R5 as cellular proteins that facilitate infection of human SVG-A glial cells by JCPyV. PI3Kα appears less important for polyomavirus infection than PI3Kγ. CRISPR/Cas9-mediated knockout of PIK3R5 or PI3Kγ inhibited infection by authentic JCPyV and by JC pseudovirus. PI3Kγ knockout also inhibited infection by BK and Merkel Cell pseudoviruses, other pathogenic human polyomaviruses, and SV40, an important model polyomavirus. Reintroduction of the wild-type PI3Kγ gene into the PI3Kγ knock-out SVG-A cells rescued the JCPyV infection defect. Disruption of the PI3Kγ pathway did not block binding of JCPyV to cells or virus internalization, implying that PI3Kγ facilitates some intracellular step(s) of infection. These results imply that agents that inhibit PI3Kγ signaling may have a role in managing polyomavirus infections.


Asunto(s)
Virus JC/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Infecciones por Polyomavirus , Poliomavirus/fisiología , Internalización del Virus , Línea Celular , Humanos , Leucoencefalopatía Multifocal Progresiva/virología , Neuroglía/enzimología , Neuroglía/virología , Fosfatidilinositoles/metabolismo , Infecciones por Polyomavirus/enzimología , Infecciones por Polyomavirus/virología
15.
Viruses ; 12(9)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882975

RESUMEN

In the fifty years since the discovery of JC polyomavirus (JCPyV), the body of research representing our collective knowledge on this virus has grown substantially. As the causative agent of progressive multifocal leukoencephalopathy (PML), an often fatal central nervous system disease, JCPyV remains enigmatic in its ability to live a dual lifestyle. In most individuals, JCPyV reproduces benignly in renal tissues, but in a subset of immunocompromised individuals, JCPyV undergoes rearrangement and begins lytic infection of the central nervous system, subsequently becoming highly debilitating-and in many cases, deadly. Understanding the mechanisms allowing this process to occur is vital to the development of new and more effective diagnosis and treatment options for those at risk of developing PML. Here, we discuss the current state of affairs with regards to JCPyV and PML; first summarizing the history of PML as a disease and then discussing current treatment options and the viral biology of JCPyV as we understand it. We highlight the foundational research published in recent years on PML and JCPyV and attempt to outline which next steps are most necessary to reduce the disease burden of PML in populations at risk.


Asunto(s)
Virus JC/fisiología , Infecciones por Polyomavirus/virología , Infecciones Tumorales por Virus/virología , Animales , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Virus JC/genética , Infecciones por Polyomavirus/diagnóstico , Infecciones por Polyomavirus/tratamiento farmacológico , Infecciones por Polyomavirus/historia , Infecciones Tumorales por Virus/diagnóstico , Infecciones Tumorales por Virus/tratamiento farmacológico , Infecciones Tumorales por Virus/historia
16.
bioRxiv ; 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32793908

RESUMEN

COVID-19 affects vulnerable populations including elderly individuals and patients with cancer. Natural Killer (NK) cells and innate-immune TRAIL suppress transformed and virally-infected cells. ACE2, and TMPRSS2 protease promote SARS-CoV-2 infectivity, while inflammatory cytokines IL-6, or G-CSF worsen COVID-19 severity. We show MEK inhibitors (MEKi) VS-6766, trametinib and selumetinib reduce ACE2 expression in human cells. In some human cells, remdesivir increases ACE2-promoter luciferase-reporter expression, ACE2 mRNA and protein, and ACE2 expression is attenuated by MEKi. In serum-deprived and stimulated cells treated with remdesivir and MEKi we observed correlations between pRB, pERK, and ACE2 expression further supporting role of proliferative state and MAPK pathway in ACE2 regulation. We show elevated cytokines in COVID-19-(+) patient plasma (N=9) versus control (N=11). TMPRSS2, inflammatory cytokines G-CSF, M-CSF, IL-1α, IL-6 and MCP-1 are suppressed by MEKi alone or with remdesivir. We observed MEKi stimulation of NK-cell killing of target-cells, without suppressing TRAIL-mediated cytotoxicity. Pseudotyped SARS-CoV-2 virus with a lentiviral core and SARS-CoV-2 D614 or G614 SPIKE (S) protein on its envelope infected human bronchial epithelial cells, small airway epithelial cells, or lung cancer cells and MEKi suppressed infectivity of the pseudovirus. We show a drug class-effect with MEKi to stimulate NK cells, inhibit inflammatory cytokines and block host-factors for SARS-CoV-2 infection leading also to suppression of SARS-CoV-2-S pseudovirus infection of human cells. MEKi may attenuate SARS-CoV-2 infection to allow immune responses and antiviral agents to control disease progression.

17.
Virology ; 548: 17-24, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32838939

RESUMEN

The demyelinating disease progressive multifocal leukoencephalopathy (PML) is caused by the human polyomavirus, JCPyV, under conditions of prolonged immunosuppression. Initial infection is asymptomatic, and the virus establishes lifelong persistence in the host. Following the loss of immune surveillance, the virus can traffic to the central nervous system and infect oligodendrocytes to cause demyelination and PML. The mechanisms involved in glial cell infection are not completely understood. In a screen for N-glycosylated proteins that influence JCPyV pathology, we identified Adipocyte Plasma Membrane Associated Protein (APMAP) as a host cell modulator of JCPyV infection. The removal of APMAP by small interfering siRNA as well as by CRISPR-Cas9 gene editing resulted in a significant decrease in JCPyV infection. Exogenous expression of APMAP in APMAP knockout cell lines rescued susceptibility to infection. These data suggest that virus infection of glial cells is dependent on APMAP.


Asunto(s)
Virus JC/fisiología , Neuroglía/metabolismo , Infecciones por Polyomavirus/metabolismo , Línea Celular , Interacciones Huésped-Patógeno , Humanos , Virus JC/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana , Neuroglía/virología , Oligodendroglía/metabolismo , Oligodendroglía/virología , Infecciones por Polyomavirus/genética , Infecciones por Polyomavirus/virología
18.
PLoS Pathog ; 16(3): e1008371, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130281

RESUMEN

The human polyomavirus, JCPyV, is the causative agent of progressive multifocal leukoencephalopathy (PML) in immunosuppressed and immunomodulated patients. Initial infection with JCPyV is common and the virus establishes a long-term persistent infection in the urogenital system of 50-70% of the human population worldwide. A major gap in the field is that we do not know how the virus traffics from the periphery to the brain to cause disease. Our recent discovery that human choroid plexus epithelial cells are fully susceptible to virus infection together with reports of JCPyV infection of choroid plexus in vivo has led us to hypothesize that the choroid plexus plays a fundamental role in this process. The choroid plexus is known to relay information between the blood and the brain by the release of extracellular vesicles. This is particularly important because human macroglia (oligodendrocytes and astrocytes), the major targets of virus infection in the central nervous system (CNS), do not express the known attachment receptors for the virus and do not bind virus in human tissue sections. In this report we show that JCPyV infected choroid plexus epithelial cells produce extracellular vesicles that contain JCPyV and readily transmit the infection to human glial cells. Transmission of the virus by extracellular vesicles is independent of the known virus attachment receptors and is not neutralized by antisera directed at the virus. We also show that extracellular vesicles containing virus are taken into target glial cells by both clathrin dependent endocytosis and macropinocytosis. Our data support the hypothesis that the choroid plexus plays a fundamental role in the dissemination of virus to brain parenchyma.


Asunto(s)
Plexo Coroideo/metabolismo , Células Epiteliales/metabolismo , Vesículas Extracelulares/metabolismo , Virus JC/metabolismo , Leucoencefalopatía Multifocal Progresiva/metabolismo , Neuroglía/metabolismo , Receptores Virales/metabolismo , Línea Celular Transformada , Plexo Coroideo/patología , Plexo Coroideo/virología , Células Epiteliales/patología , Células Epiteliales/virología , Vesículas Extracelulares/patología , Vesículas Extracelulares/virología , Humanos , Leucoencefalopatía Multifocal Progresiva/patología , Neuroglía/patología , Neuroglía/virología
20.
Cell Rep ; 27(7): 1960-1966.e6, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31091436

RESUMEN

JC polyomavirus (JCPyV) is a ubiquitous human pathogen that causes progressive multifocal leukoencephalopathy (PML). The entry receptors for JCPyV belong to the 5-hydroxytryptamine 2 receptor (5-HT2R) family, but how individual members of the family function to facilitate infection is not known. We used proximity ligation assay (PLA) to determine that JCPyV interacts with each of the 5-HT2 receptors (5-HT2Rs) in a narrow window of time during entry. We used CRISPR-Cas9 to randomly introduce stop codons in the gene for each receptor and discovered that the second intracellular loop of each was necessary for infection. This loop contains a motif possibly involved in receptor internalization by ß-arrestin. Mutation of this motif and small interfering RNA (siRNA) knockdown of ß-arrestin recapitulated the results of our CRISPR-Cas9 screen, showing that this motif is critical. Our results have implications for the role these receptors play in virus infection and for their normal functioning as receptors for serotonin.


Asunto(s)
Virus JC/genética , Receptores de Serotonina 5-HT2/genética , Receptores de Serotonina 5-HT2/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo , Internalización del Virus , Células HEK293 , Interacciones Huésped-Patógeno/genética , Humanos , Virus JC/patogenicidad , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...