Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33888587

RESUMEN

Many viruses utilize ringed packaging ATPases to translocate double-stranded DNA into procapsids during replication. A critical step in the mechanochemical cycle of such ATPases is ATP binding, which causes a subunit within the motor to grip DNA tightly. Here, we probe the underlying molecular mechanism by which ATP binding is coupled to DNA gripping and show that a glutamate-switch residue found in AAA+ enzymes is central to this coupling in viral packaging ATPases. Using free-energy landscapes computed through molecular dynamics simulations, we determined the stable conformational state of the ATPase active site in ATP- and ADP-bound states. Our results show that the catalytic glutamate residue transitions from an active to an inactive pose upon ATP hydrolysis and that a residue assigned as the glutamate switch is necessary for regulating this transition. Furthermore, we identified via mutual information analyses the intramolecular signaling pathway mediated by the glutamate switch that is responsible for coupling ATP binding to conformational transitions of DNA-gripping motifs. We corroborated these predictions with both structural and functional experimental measurements. Specifically, we showed that the crystal structure of the ADP-bound P74-26 packaging ATPase is consistent with the structural coupling predicted from simulations, and we further showed that disrupting the predicted signaling pathway indeed decouples ATPase activity from DNA translocation activity in the φ29 DNA packaging motor. Our work thus establishes a signaling pathway that couples chemical and mechanical events in viral DNA packaging motors.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ácido Glutámico/metabolismo , Simulación de Dinámica Molecular , Empaquetamiento del Genoma Viral , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 115(31): 7961-7966, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30012596

RESUMEN

Subunits in multimeric ring-shaped motors must coordinate their activities to ensure correct and efficient performance of their mechanical tasks. Here, we study WT and arginine finger mutants of the pentameric bacteriophage φ29 DNA packaging motor. Our results reveal the molecular interactions necessary for the coordination of ADP-ATP exchange and ATP hydrolysis of the motor's biphasic mechanochemical cycle. We show that two distinct regulatory mechanisms determine this coordination. In the first mechanism, the DNA up-regulates a single subunit's catalytic activity, transforming it into a global regulator that initiates the nucleotide exchange phase and the hydrolysis phase. In the second, an arginine finger in each subunit promotes ADP-ATP exchange and ATP hydrolysis of its neighbor. Accordingly, we suggest that the subunits perform the roles described for GDP exchange factors and GTPase-activating proteins observed in small GTPases. We propose that these mechanisms are fundamental to intersubunit coordination and are likely present in other ring ATPases.


Asunto(s)
Adenosina Trifosfatasas , Fagos de Bacillus/enzimología , Modelos Biológicos , Proteínas Virales , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo
3.
Cell Rep ; 14(8): 2017-2029, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26904950

RESUMEN

Ring NTPases are a class of ubiquitous molecular motors involved in basic biological partitioning processes. dsDNA viruses encode ring ATPases that translocate their genomes to near-crystalline densities within pre-assembled viral capsids. Here, X-ray crystallography, cryoEM, and biochemical analyses of the dsDNA packaging motor in bacteriophage phi29 show how individual subunits are arranged in a pentameric ATPase ring and suggest how their activities are coordinated to translocate dsDNA. The resulting pseudo-atomic structure of the motor and accompanying functional analyses show how ATP is bound in the ATPase active site; identify two DNA contacts, including a potential DNA translocating loop; demonstrate that a trans-acting arginine finger is involved in coordinating hydrolysis around the ring; and suggest a functional coupling between the arginine finger and the DNA translocating loop. The ability to visualize the motor in action illuminates how the different motor components interact with each other and with their DNA substrate.


Asunto(s)
Adenosina Trifosfatasas/química , Fagos de Bacillus/ultraestructura , ADN Viral/química , ADN/química , Subunidades de Proteína/química , Proteínas Virales/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/química , Arginina/química , Fagos de Bacillus/genética , Fagos de Bacillus/metabolismo , Bacillus subtilis/virología , Cápside/metabolismo , Cápside/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , Empaquetamiento del ADN , ADN Viral/genética , ADN Viral/metabolismo , Expresión Génica , Hidrólisis , Modelos Moleculares , Dominios Proteicos , Estructura Secundaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ensamble de Virus
4.
J Mol Biol ; 410(1): 50-9, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21570409

RESUMEN

Double-stranded DNA bacteriophages and their eukaryotic virus counterparts have 12-fold head-tail connector assemblages embedded at a unique capsid vertex. This vertex is the site of assembly of the DNA packaging motor, and the connector has a central channel through which viral DNA passes during genome packaging and subsequent host infection. Crystal structures of connectors from different phages reveal either disordered residues or structured loops that project into the connector channel. Given the proximity to the translocating DNA substrate, these loops have been proposed to play a role in DNA packaging. Previous models have proposed structural motions in either the packaging ATPase or the connector channel loops as the driving force that translocates the DNA into the prohead. Here, we mutate the channel loops of the Bacillus subtilis bacteriophage φ29 connector and show that these loops have no active role in translocation of DNA. Instead, they appear to have an essential function near the end of packaging, acting to retain the packaged DNA in the head in preparation for motor detachment and subsequent tail assembly and virion completion.


Asunto(s)
Fagos de Bacillus/genética , Cápside/fisiología , Empaquetamiento del ADN , ADN Viral/genética , Virión , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Fagos de Bacillus/química , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Homología de Secuencia de Aminoácido
5.
J Mol Biol ; 369(1): 239-48, 2007 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-17433366

RESUMEN

The DNA packaging motor of the Bacillus subtilis bacteriophage ø29 prohead is comprised in part of an oligomeric ring of 174 base RNA molecules (pRNA) positioned near the N termini of subunits of the dodecameric head-tail connector. Deletion and alanine substitution mutants in the connector protein (gp10) N terminus were assembled into proheads in Escherichia coli and the particles tested for pRNA binding and DNA-gp3 packaging in vitro. The basic amino acid residues RKR at positions 3-5 of the gp10 N terminus were central to pRNA binding during assembly of an active DNA packaging motor. Conjugation of iron(S)-1-(p-bromoacetamidobenzyl) ethylenediaminetetraacetate (Fe-BABE) to residue S170C in the narrow end of the connector, near the N terminus, permitted hydroxyl radical probing of bound [(32)P]pRNA and identified two discrete sites proximal to this residue: the C-helix at the junction of the A, C and D helices, and the E helix and the CE loop/D loop of the intermolecular base pairing site.


Asunto(s)
Alanina/metabolismo , Sustitución de Aminoácidos , Bacteriófagos/metabolismo , Proteínas de la Cápside/metabolismo , Ácido Edético/análogos & derivados , ARN Viral/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas de la Cápside/química , Cisteína/metabolismo , Empaquetamiento del ADN , Ácido Edético/metabolismo , Electroforesis en Gel de Poliacrilamida , Ensayo de Cambio de Movilidad Electroforética , Radical Hidroxilo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Mutación/genética , Conformación de Ácido Nucleico , Unión Proteica , ARN Viral/química , ARN Viral/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...