Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nature ; 622(7983): 619-626, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758950

RESUMEN

Postnatal maturation of cardiomyocytes is characterized by a metabolic switch from glycolysis to fatty acid oxidation, chromatin reconfiguration and exit from the cell cycle, instating a barrier for adult heart regeneration1,2. Here, to explore whether metabolic reprogramming can overcome this barrier and enable heart regeneration, we abrogate fatty acid oxidation in cardiomyocytes by inactivation of Cpt1b. We find that disablement of fatty acid oxidation in cardiomyocytes improves resistance to hypoxia and stimulates cardiomyocyte proliferation, allowing heart regeneration after ischaemia-reperfusion injury. Metabolic studies reveal profound changes in energy metabolism and accumulation of α-ketoglutarate in Cpt1b-mutant cardiomyocytes, leading to activation of the α-ketoglutarate-dependent lysine demethylase KDM5 (ref. 3). Activated KDM5 demethylates broad H3K4me3 domains in genes that drive cardiomyocyte maturation, lowering their transcription levels and shifting cardiomyocytes into a less mature state, thereby promoting proliferation. We conclude that metabolic maturation shapes the epigenetic landscape of cardiomyocytes, creating a roadblock for further cell divisions. Reversal of this process allows repair of damaged hearts.


Asunto(s)
Reprogramación Celular , Ácidos Grasos , Corazón , Regeneración , Animales , Ratones , Carnitina O-Palmitoiltransferasa/deficiencia , Carnitina O-Palmitoiltransferasa/genética , Hipoxia de la Célula , Proliferación Celular , Metabolismo Energético , Activación Enzimática , Epigénesis Genética , Ácidos Grasos/metabolismo , Corazón/fisiología , Histona Demetilasas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mutación , Miocardio , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Regeneración/fisiología , Daño por Reperfusión , Transcripción Genética
3.
Nat Genet ; 55(1): 100-111, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36539616

RESUMEN

Generation of functional transcripts requires transcriptional initiation at regular start sites, avoiding production of aberrant and potentially hazardous aberrant RNAs. The mechanisms maintaining transcriptional fidelity and the impact of spurious transcripts on cellular physiology and organ function have not been fully elucidated. Here we show that TET3, which successively oxidizes 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) and other derivatives, prevents aberrant intragenic entry of RNA polymerase II pSer5 into highly expressed genes of airway smooth muscle cells, assuring faithful transcriptional initiation at canonical start sites. Loss of TET3-dependent 5hmC production in SMCs results in accumulation of spurious transcripts, which stimulate the endosomal nucleic-acid-sensing TLR7/8 signaling pathway, thereby provoking massive inflammation and airway remodeling resembling human bronchial asthma. Furthermore, we found that 5hmC levels are substantially lower in human asthma airways compared with control samples. Suppression of spurious transcription might be important to prevent chronic inflammation in asthma.


Asunto(s)
5-Metilcitosina , Asma , Humanos , 5-Metilcitosina/metabolismo , Inmunidad Innata/genética , Inflamación/genética , Asma/genética , Metilación de ADN
4.
Sci Transl Med ; 14(654): eabf1922, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35857828

RESUMEN

Peptic ulcer disease is a frequent clinical problem with potentially serious complications such as bleeding or perforation. A decisive factor in the pathogenesis of peptic ulcers is gastric acid, the secretion of which is controlled by the hormone gastrin released from gastric G cells. However, the molecular mechanisms regulating gastrin plasma concentrations are poorly understood. Here, we identified a semaphorin-plexin signaling pathway that operates in gastric G cells to inhibit gastrin expression on a transcriptional level, thereby limiting food-stimulated gastrin release and gastric acid secretion. Using a systematic siRNA screening approach combined with biochemical, cell biology, and in vivo mouse experiments, we found that the RasGAP protein Rasal1 is a central mediator of plexin signal transduction, which suppresses gastrin expression through inactivation of the small GTPase R-Ras. Moreover, we show that Rasal1 is pathophysiologically relevant for the pathogenesis of peptic ulcers induced by nonsteroidal anti-inflammatory drugs (NSAIDs), a main risk factor of peptic ulcers in humans. Last, we show that application of recombinant semaphorin 4D alleviates peptic ulcer disease in mice in vivo, demonstrating that this signaling pathway can be harnessed pharmacologically. This study unravels a mode of G cell regulation that is functionally important in gastric homeostasis and disease.


Asunto(s)
Úlcera Péptica , Semaforinas , Animales , Moléculas de Adhesión Celular , Proteínas Activadoras de GTPasa , Gastrinas/efectos adversos , Gastrinas/metabolismo , Humanos , Ratones , Proteínas del Tejido Nervioso , Úlcera Péptica/inducido químicamente , Transducción de Señal
5.
Nat Commun ; 13(1): 4184, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35859073

RESUMEN

The NAD+-dependent SIRT1-7 family of protein deacetylases plays a vital role in various molecular pathways related to stress response, DNA repair, aging and metabolism. Increased activity of individual sirtuins often exerts beneficial effects in pathophysiological conditions whereas reduced activity is usually associated with disease conditions. Here, we demonstrate that SIRT6 deacetylates H3K56ac in myofibers to suppress expression of utrophin, a dystrophin-related protein stabilizing the sarcolemma in absence of dystrophin. Inactivation of Sirt6 in dystrophin-deficient mdx mice reduced damage of myofibers, ameliorated dystrophic muscle pathology, and improved muscle function, leading to attenuated activation of muscle stem cells (MuSCs). ChIP-seq and locus-specific recruitment of SIRT6 using a CRISPR-dCas9/gRNA approach revealed that SIRT6 is critical for removal of H3K56ac at the Downstream utrophin Enhancer (DUE), which is indispensable for utrophin expression. We conclude that epigenetic manipulation of utrophin expression is a promising approach for the treatment of Duchenne Muscular Dystrophy (DMD).


Asunto(s)
Distrofia Muscular de Duchenne , Sirtuinas , Animales , Distrofina/metabolismo , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/metabolismo , Sirtuinas/genética , Utrofina/genética , Utrofina/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(24): e2201707119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35671428

RESUMEN

A number of inflammatory lung diseases, including chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and pneumonia, are modulated by WNT/ß-catenin signaling. However, the underlying molecular mechanisms remain unclear. Here, starting with a forward genetic screen in mouse, we identify the WNT coreceptor Related to receptor tyrosine kinase (RYK) acting in mesenchymal tissues as a cell survival and antiinflammatory modulator. Ryk mutant mice exhibit lung hypoplasia and inflammation as well as alveolar simplification due to defective secondary septation, and deletion of Ryk specifically in mesenchymal cells also leads to these phenotypes. By analyzing the transcriptome of wild-type and mutant lungs, we observed the up-regulation of proapoptotic and inflammatory genes whose expression can be repressed by WNT/RYK signaling in vitro. Moreover, mesenchymal Ryk deletion at postnatal and adult stages can also lead to lung inflammation, thus indicating a continued role for WNT/RYK signaling in homeostasis. Our results indicate that RYK signaling through ß-catenin and Nuclear Factor kappa B (NF-κB) is part of a safeguard mechanism against mesenchymal cell death, excessive inflammatory cytokine production, and inflammatory cell recruitment and accumulation. Notably, RYK expression is down-regulated in the stromal cells of pneumonitis patient lungs. Altogether, our data reveal that RYK signaling plays critical roles as an antiinflammatory modulator during lung development and homeostasis and provide an animal model to further investigate the etiology of, and therapeutic approaches to, inflammatory lung diseases.


Asunto(s)
Neumonía , Proteínas Tirosina Quinasas Receptoras , Vía de Señalización Wnt , beta Catenina , Animales , Humanos , Pulmón/enzimología , Pulmón/crecimiento & desarrollo , Mesodermo/metabolismo , Ratones , FN-kappa B/metabolismo , Neumonía/enzimología , Neumonía/genética , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Células del Estroma/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
8.
Circulation ; 144(13): 1042-1058, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34247492

RESUMEN

BACKGROUND: The pathogenesis of life-threatening cardiopulmonary diseases such as pulmonary hypertension (PH) and chronic obstructive pulmonary disease (COPD) originates from a complex interplay of environmental factors and genetic predispositions that is not fully understood. Likewise, little is known about developmental abnormalities or epigenetic dysregulations that might predispose for PH or COPD in adult individuals. METHODS: To identify pathology-associated epigenetic alteration in diseased lung tissues, we screened a cohort of human patients with PH and COPD for changes of histone modifications by immunofluorescence staining. To analyze the function of H4K20me2/3 in lung pathogenesis, we developed a series of Suv4-20h1 knockout mouse lines targeting cardiopulmonary progenitor cells and different heart and lung cell types, followed by hemodynamic studies and morphometric assessment of tissue samples. Molecular, cellular, and biochemical techniques were applied to analyze the function of Suv4-20h1-dependent epigenetic processes in cardiopulmonary progenitor cells and their derivatives. RESULTS: We discovered a strong reduction of the histone modifications of H4K20me2/3 in human patients with COPD but not patients with PH that depend on the activity of the H4K20 di-methyltransferase SUV4-20H1. Loss of Suv4-20h1 in cardiopulmonary progenitor cells caused a COPD-like/PH phenotype in mice including the formation of perivascular tertiary lymphoid tissue and goblet cell hyperplasia, hyperproliferation of smooth muscle cells/myofibroblasts, impaired alveolarization and maturation defects of the microvasculature leading to massive right ventricular dilatation and premature death. Mechanistically, SUV4-20H1 binds directly to the 5'-upstream regulatory element of the superoxide dismutase 3 (Sod3) gene to repress its expression. Increased levels of the extracellular SOD3 enzyme in Suv4-20h1 mutants increases hydrogen peroxide concentrations, causing vascular defects and impairing alveolarization. CONCLUSIONS: Our findings reveal a pivotal role of the histone modifier SUV4-20H1 in cardiopulmonary codevelopment and uncover the developmental origins of cardiopulmonary diseases. We assume that the study will facilitate the understanding of pathogenic events causing PH and COPD and aid the development of epigenetic drugs for the treatment of cardiopulmonary diseases.


Asunto(s)
Epigénesis Genética/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Hipertensión Pulmonar/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Células Madre/metabolismo , Animales , Humanos , Ratones , Ratones Noqueados
9.
EMBO J ; 39(22): e105098, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32960481

RESUMEN

Chromatin remodeling complexes have functions in transcriptional regulation and chromosome maintenance, but it is mostly unknown how the function of these normally ubiquitous complexes is specified in the cellular context. Here, we describe that the evolutionary conserved long non-coding RNA linc-MYH regulates the composition of the INO80 chromatin remodeler complex in muscle stem cells and prevents interaction with WDR5 and the transcription factor YY1. Linc-MYH acts as a selective molecular switch in trans that governs the pro-proliferative function of the ubiquitous INO80 complex but does not affect its role in maintaining genomic stability. The molecular switch is essential for restricting generation of quiescent MuSCs and proliferation of myoblasts in homeostasis and regeneration. Since linc-MYH is expressed in proliferating myoblasts but not in quiescent MuSCs, we reason that the extent of myoblast proliferation has decisive effects on the size of the quiescent MuSC pool.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Unión al ADN/metabolismo , Hipertrofia/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , ARN Largo no Codificante/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Animales , Proliferación Celular , Cromatina , ADN Glicosilasas/genética , Proteínas de Unión al ADN/genética , Epigenómica , Regulación Enzimológica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/citología , Mioblastos/citología , ARN Largo no Codificante/genética , ARN no Traducido , Regeneración/fisiología , Transcriptoma , Factor de Transcripción YY1/genética
10.
Nat Commun ; 11(1): 2303, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385276

RESUMEN

White adipose tissue (WAT) expansion in obesity occurs through enlargement of preexisting adipocytes (hypertrophy) and through formation of new adipocytes (adipogenesis). Adipogenesis results in WAT hyperplasia, smaller adipocytes and a metabolically more favourable form of obesity. How obesogenic WAT hyperplasia is induced remains, however, poorly understood. Here, we show that the mechanosensitive cationic channel Piezo1 mediates diet-induced adipogenesis. Mice lacking Piezo1 in mature adipocytes demonstrated defective differentiation of preadipocyte into mature adipocytes when fed a high fat diet (HFD) resulting in larger adipocytes, increased WAT inflammation and reduced insulin sensitivity. Opening of Piezo1 in mature adipocytes causes the release of the adipogenic fibroblast growth factor 1 (FGF1), which induces adipocyte precursor differentiation through activation of the FGF-receptor-1. These data identify a central feed-back mechanism by which mature adipocytes control adipogenesis during the development of obesity and suggest Piezo1-mediated adipocyte mechano-signalling as a mechanism to modulate obesity and its metabolic consequences.


Asunto(s)
Adipocitos/metabolismo , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Canales Iónicos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Adipogénesis/fisiología , Tejido Adiposo Blanco/metabolismo , Animales , Calorimetría , Células Cultivadas , Femenino , Factor 1 de Crecimiento de Fibroblastos/genética , Citometría de Flujo , Humanos , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Insulina/sangre , Interleucina-6/sangre , Canales Iónicos/genética , Masculino , Ratones , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
11.
J Microsc ; 275(1): 36-50, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31020994

RESUMEN

Accurate estimation of the absolute number of a particular cell-type in whole organs is increasingly important in studies on organogenesis, and the remodelling and repair of diseased tissues. The unbiased estimation of the absolute number of cells in an organ is complicated, and design-based stereology remains the method of choice. This has led investigators to explore alternative approaches - such as flow cytometry - as a faster and less labour-intensive replacement for stereology. To address whether flow cytometry might substitute stereology, design-based stereology was compared with microfluorosphere-controlled flow cytometry, for estimation of the absolute number of alveolar epithelial type 2 cells (AEC2) in the lungs of two mouse strains: wild-type C57BL/6J mice and Sftpc-YFP mice. Using design-based stereology, ≈10.7 million and ≈9.0 million AEC2 were estimated in the lungs of wild-type C57BL/6J mice and Sftpc-YFP mice, respectively. Substantially fewer AEC2 were estimated using flow cytometry. In wild-type C57/BL6J mouse lungs, 59% of the AEC2 estimated by design-based stereology were estimated by flow cytometry (≈6.3 million), using intracellular staining for pro-surfactant protein C. Similarly, in Sftpc-YFP mouse lungs, 23% of the AEC2 estimated by design-based stereology were estimated by flow cytometry (≈2.1 million), using yellow fluorescent protein fluorescence. Our data suggest that flow cytometry underestimates AEC2 number, possibly due to impaired recoverability of AEC2 from dissociated lung tissue. These data suggest design-based stereology as the method of choice for the unbiased estimation of the absolute number of cells in an organ. LAY DESCRIPTION: There is much interest in studies on the pathological changes that accompany disease, to be able to count or estimate the number of a particular cell-type in solid tissue, such as an organ. The easiest way to do this is to make liquid suspensions of single cells from solid tissue, and then to count the number of cells of interest, using either a microscope, or automated cell counting (for example, a flow cytometer). Alternatively, solid tissue may be examined microscopically, where the cell-type of interest might also be counted 'by eye' or in an automated manner using software (called planimetry). All of these approaches to counting cells in solid organs come with serious drawbacks, and estimation of the cell number may thus be inaccurate. To overcome this, we have employed a combination of mathematical tools and statistical principles together with microscopy (called 'design-based stereology') that permits the unbiased counting of cells in microscopic fields, which can then be extrapolated to the entire solid tissue volume, to accurately estimate the number of a cell-type of interest in the solid tissue. We have compared this method with the estimation of cell number using a flow cytometer. Our data reveal that flow cytometry appreciably underestimates the total number of cells in solid tissue, where we used the lung as an example of solid tissue, and estimated the number of a unique cell-type in the lung: the alveolar epithelial type 2 cell, to compare stereology with flow cytometry. We believe that flow cytometry underestimates the cell number due to the difficulty of breaking up solid tissue into single cells, and being able to recover all of those single cells for analysis. Our data supports the recommendation to use stereology, not flow cytometry, to accurately estimate the number of a particular cell-type in solid tissue. Accurate estimation of the absolute number of a particular cell-type in whole organs is increasingly important in studies on organogenesis, and the remodelling and repair of diseased tissues. Although estimation of the relative number of cells might be straightforward, unbiased estimation of the absolute number of cells in an organ is complicated, and design-based stereology remains the method of choice. This has led investigators to explore alternative approaches - such as flow cytometry - as a faster and less labour-intensive replacement for stereology. To address whether flow cytometry might substitute stereology, design-based stereology was compared with microfluorosphere-controlled flow cytometry, for estimation of the absolute number of alveolar epithelial type 2 cells (AEC2) in the lungs of two mouse strains: wild-type C57BL/6J mice and Sftpc-YFP mice. Using design-based stereology, ≈10.7 million and ≈9.0 million AEC2 were estimated in the lungs of wild-type C57BL/6J mice and Sftpc-YFP mice, respectively. Substantially fewer AEC2 were estimated using flow cytometry. In wild-type C57/BL6J mouse lungs, 59% of the AEC2 estimated by design-based stereology were estimated by flow cytometry (≈6.3 million), using intracellular staining for pro-surfactant protein C. Similarly, in Sftpc-YFP mouse lungs, 23% of the AEC2 estimated by design-based stereology were estimated by flow cytometry (≈2.1 million), using yellow fluorescent protein fluorescence. Our data suggest that flow cytometry underestimates AEC2 number, possibly due to impaired recoverability of AEC2 from dissociated lung tissue. These data suggest design-based stereology as the method of choice for the unbiased estimation of the absolute number of cells in an organ.


Asunto(s)
Células Epiteliales Alveolares , Citometría de Flujo/métodos , Imagenología Tridimensional/métodos , Pulmón/citología , Animales , Recuento de Células/métodos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
12.
Front Physiol ; 8: 849, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163195

RESUMEN

The mouse bitter taste receptors Tas2r143, Tas2r135, and Tas2r126 are encoded by genes that cluster on chromosome 6 and have been suggested to be expressed under common regulatory elements. Previous studies indicated that the Tas2r143/Tas2r135/Tas2r126 cluster is expressed in the heart, but other organs had not been systematically analyzed. In order to investigate the expression of this bitter taste receptor gene cluster in non-gustatory tissues, we generated a BAC (bacterial artificial chromosome) based transgenic mouse line, expressing CreERT2 under the control of the Tas2r143 promoter. After crossing this line with a mouse line expressing EGFP after Cre-mediated recombination, we were able to validate the Tas2r143-CreERT2 transgenic mouse line and monitor the expression of Tas2r143. EGFP-positive cells, indicating expression of members of the cluster, were found in about 47% of taste buds, and could also be found in several other organs. A population of EGFP-positive cells was identified in thymic epithelial cells, in the lamina propria of the intestine and in vascular smooth muscle cells of cardiac blood vessels. EGFP-positive cells were also identified in the epithelium of organs readily exposed to pathogens including lower airways, the gastrointestinal tract, urethra, vagina, and cervix. With respect to the function of cells expressing this bitter taste receptor cluster, RNA-seq analysis in EGFP-positive cells isolated from the epithelium of trachea and stomach showed expression of genes related to innate immunity. These data further support the concept that bitter taste receptors serve functions outside the gustatory system.

13.
PLoS One ; 12(8): e0183166, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28806758

RESUMEN

GPR116 (ADGRF5) and ELTD1 (ADGRL4) belong to different subfamilies of the adhesion G-protein-coupled receptor group but are both expressed in endothelial cells. We therefore analyzed their functions in mice lacking these receptors. While loss of GPR116 or ELTD1 alone had no obvious effect on cardiovascular or kidney function, mice lacking both, GPR116 and ELTD1, showed malformations of the aortic arch arteries and the cardiac outflow tract leading to perinatal lethality in about 50% of the mutants. In addition to cardiovascular malformations, surviving mice developed renal thrombotic microangiopathy as well as hemolysis and splenomegaly, and their lifespan was significantly reduced. Loss of GPR116 and ELTD1 specifically in endothelial cells or neural crest-derived cells did not recapitulate any of the phenotypes observed in GPR116-ELTD1 double deficient mice, indicating that loss of GPR116 and ELTD1 expressed by other cells accounts for the observed cardiovascular and renal defects.


Asunto(s)
Receptores Acoplados a Proteínas G/deficiencia , Insuficiencia Renal/fisiopatología , Remodelación Vascular , Animales , Animales Recién Nacidos , Arterias/anomalías , Arterias/patología , Cardiomegalia/complicaciones , Cardiomegalia/metabolismo , Cardiomegalia/patología , Anomalías Cardiovasculares/complicaciones , Anomalías Cardiovasculares/patología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Hemólisis , Ratones Noqueados , Receptores Acoplados a Proteínas G/metabolismo , Insuficiencia Renal/complicaciones , Insuficiencia Renal/embriología , Insuficiencia Renal/patología , Esplenomegalia/complicaciones , Esplenomegalia/patología , Microangiopatías Trombóticas/complicaciones , Microangiopatías Trombóticas/patología
14.
Cell ; 164(4): 668-80, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26871632

RESUMEN

Mouse embryonic stem cells (ESCs) are maintained in a naive ground state of pluripotency in the presence of MEK and GSK3 inhibitors. Here, we show that ground-state ESCs express low Myc levels. Deletion of both c-myc and N-myc (dKO) or pharmacological inhibition of Myc activity strongly decreases transcription, splicing, and protein synthesis, leading to proliferation arrest. This process is reversible and occurs without affecting pluripotency, suggesting that Myc-depleted stem cells enter a state of dormancy similar to embryonic diapause. Indeed, c-Myc is depleted in diapaused blastocysts, and the differential expression signatures of dKO ESCs and diapaused epiblasts are remarkably similar. Following Myc inhibition, pre-implantation blastocysts enter biosynthetic dormancy but can progress through their normal developmental program after transfer into pseudo-pregnant recipients. Our study shows that Myc controls the biosynthetic machinery of stem cells without affecting their potency, thus regulating their entry and exit from the dormant state.


Asunto(s)
Células Madre Embrionarias/citología , Genes myc , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Blastocisto/metabolismo , Proliferación Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Técnicas de Inactivación de Genes , Masculino , Ratones , Ratones Endogámicos C57BL
15.
Kidney Int ; 89(1): 82-94, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26466317

RESUMEN

Renal dendritic cells are a major component of the renal mononuclear phagocytic system. In the renal interstitium, these cells are exposed to an osmotic gradient, mainly sodium, whose concentration progressively increases towards inner medulla. Renal allograft rejection affects predominantly the cortex, suggesting a protective role of the renal medullary micromilieu. Whether osmolar variations can modulate the function of renal dendritic cells is currently undefined. Considering the central role of dendritic cells in promoting allorejection, we tested whether the biophysical micromilieu, particularly the interstitial osmotic gradient, influences their alloreactivity. There was a progressive depletion of leukocytes towards the medulla of homeostatic kidney. Only macrophages opposed this tendency. Flow cytometry of homeostatic and post-transplant medullary dendritic cells revealed a switch towards a macrophage-like phenotype. Similarly, bone marrow-derived dendritic cells developed ex vivo in sodium chloride-enriched medium acquired a M2-like signature. Microarray analysis of allotransplant dendritic cells posed a medullary downregulation of genes mainly involved in alloantigen recognition. Gene expression profiles of both medullary dendritic cells and bone marrow-derived dendritic cells matured in hyperosmolar medium had an overlap with the macrophage M2 signature. Thus, the medullary environment inhibits an alloimmune response by modulating the phenotype and function of dendritic cells.


Asunto(s)
Microambiente Celular , Células Dendríticas/inmunología , Rechazo de Injerto/genética , Rechazo de Injerto/inmunología , Fenotipo , Animales , Células de la Médula Ósea , Células Cultivadas , Células Dendríticas/citología , Células Dendríticas/metabolismo , Regulación hacia Abajo , Perfilación de la Expresión Génica , Rechazo de Injerto/patología , Homeostasis , Inmunidad Celular/genética , Inmunidad Celular/inmunología , Trasplante de Riñón , Recuento de Leucocitos , Macrófagos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Concentración Osmolar , Receptores de Superficie Celular/metabolismo , Cloruro de Sodio/farmacología , Transcriptoma
16.
J Immunol ; 191(4): 1666-76, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23851681

RESUMEN

Invariant NK T (iNKT) cells can provide help for B cell activation and Ab production. Because B cells are also capable of cytokine production, Ag presentation, and T cell activation, we hypothesized that iNKT cells will also influence these activities. Furthermore, subsets of iNKT cells based on CD4 and CD8 expression that have distinct functional activities may differentially affect B cell functions. We investigated the effects of coculturing expanded human CD4(+), CD8α(+), and CD4(-)CD8α(-) double-negative (DN) iNKT cells with autologous peripheral B cells in vitro. All iNKT cell subsets induced IgM, IgA, and IgG release by B cells without needing the iNKT cell agonist ligand α-galactosylceramide. Additionally, CD4(+) iNKT cells induced expansions of cells with phenotypes of regulatory B cells. When cocultured with α-galactosylceramide-pulsed B cells, CD4(+) and DN iNKT cells secreted Th1 and Th2 cytokines but at 10-1000-fold lower levels than when cultured with dendritic cells. CD4(+) iNKT cells reciprocally induced IL-4 and IL-10 production by B cells. DN iNKT cells expressed the cytotoxic degranulation marker CD107a upon exposure to B cells. Remarkably, whereas iNKT cell subsets could induce CD40 and CD86 expression by B cells, iNKT cell-matured B cells were unable to drive proliferation of autologous and alloreactive conventional T cells, as seen with B cells cultured in the absence of iNKT cells. Therefore, human CD4(+), CD8α(+), and DN iNKT cells can differentially promote and regulate the induction of Ab and T cell responses by B cells.


Asunto(s)
Linfocitos B/inmunología , Subgrupos Linfocitarios/inmunología , Células T Asesinas Naturales/inmunología , Formación de Anticuerpos , Presentación de Antígeno , Antígenos CD/biosíntesis , Antígenos CD/genética , Antígenos CD1d/biosíntesis , Antígenos CD1d/genética , Degranulación de la Célula , División Celular , Línea Celular , Células Cultivadas , Técnicas de Cocultivo , Citocinas/biosíntesis , Citocinas/genética , Células Dendríticas/inmunología , Galactosilceramidas/farmacología , Regulación de la Expresión Génica , Humanos , Memoria Inmunológica , Inmunofenotipificación , Activación de Linfocitos/efectos de los fármacos , Linfopoyesis , Monocitos/citología , Células T Asesinas Naturales/efectos de los fármacos , Linfocitos T/inmunología
17.
Cancer Lett ; 335(1): 19-25, 2013 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-23376256

RESUMEN

DNA repair and G2-phase cell cycle checkpoint responses are involved in the manifestation of hyper-radiosensitivity (HRS). The low-dose radioresponse of MSH2 isogenic endometrial carcinoma cell lines was examined. Defects in cell cycle checkpoint activation and the DNA damage response in irradiated cells (0.2 Gy) were evaluated. HRS was expressed solely in MSH2+ cells and was associated with efficient activation of the early G2-phase cell cycle checkpoint. Maintenance of the arrest was associated with persistent MRE11, γH2AX, RAD51 foci at 2 h after irradiation. Persistent MRE11 and RAD51 foci were also evident 24 h after 0.2 Gy. MSH2 significantly enhances cell radiosensitivity to low dose IR.


Asunto(s)
Carcinoma/metabolismo , Supervivencia Celular/efectos de la radiación , Reparación de la Incompatibilidad de ADN , Neoplasias Endometriales/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Carcinoma/patología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Neoplasias Endometriales/patología , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular , Expresión Génica , Histonas/metabolismo , Humanos , Proteína Homóloga de MRE11 , Proteína 2 Homóloga a MutS/genética , Tolerancia a Radiación , Reparación del ADN por Recombinación
18.
J Virol ; 86(20): 11373-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22875969

RESUMEN

Cytomegalovirus (CMV) coinfection is associated with infant HIV-1 disease progression and mortality. In a cohort of Kenyan HIV-infected infants, the frequencies of activated (CD38(+) HLA-DR(+)) and apoptosis-vulnerable (CD95(+) Bcl-2(-)) CD4(+) and CD8(+) T cells increased substantially during acute CMV infection. The frequency of activated CD4(+) T cells was strongly associated with both concurrent CMV coinfection (P = 0.001) and HIV-1 viral load (P = 0.05). The frequency of apoptosis-vulnerable cells was also associated with CMV coinfection in the CD4 (P = 0.02) and CD8 (P < 0.001) T cell subsets. Similar observations were made in HIV-exposed uninfected infants. CMV-induced increases in T cell activation and apoptosis may contribute to the rapid disease progression in coinfected infants.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Citomegalovirus/complicaciones , Infecciones por Citomegalovirus/inmunología , Infecciones por VIH/complicaciones , Infecciones por VIH/inmunología , VIH-1 , Activación de Linfocitos , ADP-Ribosil Ciclasa 1/análisis , Apoptosis , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Coinfección , Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Progresión de la Enfermedad , Infecciones por VIH/virología , VIH-1/inmunología , Antígenos HLA-DR/análisis , Humanos , Lactante , Kenia , Proteínas Proto-Oncogénicas c-bcl-2/análisis , Carga Viral , Receptor fas/biosíntesis
19.
Front Immunol ; 3: 399, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23293640

RESUMEN

Natural killer (NK) cells play an important role in the containment of HIV replication during primary infection, though their functions are impaired during chronic HIV infection. Infants experience more rapid HIV disease progression than adults, but contributions of infant NK cells to containing HIV infection are unknown. The aim of this study was to determine the impact of HIV infection on infant NK cell phenotype by evaluating samples and data from a cohort study of women and their infants, conducted in Nairobi, Kenya between 1999 and 2003. The percentage and phenotype of NK cells was evaluated longitudinally by multi-parameter flow cytometry over the first year of life in HIV-infected (HIV+, = 16), HIV-exposed uninfected (HIV-EU, n = 6), and healthy unexposed controls (HIV-, n = 4). At birth, NK subset distributions based on expression of CD56 and CD16 did not differ between HIV+, HIV-EU, or HIV- infants. However, HIV infection was associated with a subsequent decline in NK cells as a percentage of total lymphocytes (p < 0.001), and an expanding proportion of CD56-CD16+ NK cells (p < 0.001). Activated CD38(bright)CD69+ NK cells were more frequent in the HIV+ infants, followed by HIV-EU and HIV- infants, in both CD56(dim) (p = 0.005) and CD56(bright) compartments (p = 0.03). HIV infection and exposure was also associated with a significant decline in the percentage of perforin-expressing NK cells in the CD56(dim) compartment over the first year of life, with HIV+ infants losing approximately 2.5% (p < 0.001) and HIV-EU infants losing 3.0% (p = 0.01) of perforin+ cells per month. Thus, infant HIV infection is associated with alterations in NK cell subsets, activation, and cytolytic potential that could contribute to their poor control over HIV infection. Furthermore, exposure to HIV infection in infants who escaped infection is also associated with alterations in NK cells that may contribute to the reduced ability to fight infections that is observed in HIV-EU infants.

20.
PLoS One ; 6(12): e28648, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22174854

RESUMEN

CD1d-restricted invariant natural killer T (iNKT) cells have diverse immune stimulatory/regulatory activities through their ability to release cytokines and to kill or transactivate other cells. Activation of iNKT cells can protect against multiple diseases in mice but clinical trials in humans have had limited impact. Clinical studies to date have targeted polyclonal mixtures of iNKT cells and we proposed that their subset compositions will influence therapeutic outcomes. We sorted and expanded iNKT cells from healthy donors and compared the phenotypes, cytotoxic activities and cytokine profiles of the CD4(+), CD8α(+) and CD4(-)CD8α(-) double-negative (DN) subsets. CD4(+) iNKT cells expanded more readily than CD8α(+) and DN iNKT cells upon mitogen stimulation. CD8α(+) and DN iNKT cells most frequently expressed CD56, CD161 and NKG2D and most potently killed CD1d(+) cell lines and primary leukemia cells. All iNKT subsets released Th1 (IFN-γ and TNF-α) and Th2 (IL-4, IL-5 and IL-13) cytokines. Relative amounts followed a CD8α>DN>CD4 pattern for Th1 and CD4>DN>CD8α for Th2. All iNKT subsets could simultaneously produce IFN-γ and IL-4, but single-positivity for IFN-γ or IL-4 was strikingly rare in CD4(+) and CD8α(+) fractions, respectively. Only CD4(+) iNKT cells produced IL-9 and IL-10; DN cells released IL-17; and none produced IL-22. All iNKT subsets upregulated CD40L upon glycolipid stimulation and induced IL-10 and IL-12 secretion by dendritic cells. Thus, subset composition of iNKT cells is a major determinant of function. Use of enriched CD8α(+), DN or CD4(+) iNKT cells may optimally harness the immunoregulatory properties of iNKT cells for treatment of disease.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Células T Asesinas Naturales/citología , Células T Asesinas Naturales/inmunología , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Citotoxicidad Inmunológica/efectos de los fármacos , Células HeLa , Humanos , Ratones , Mitógenos/farmacología , Células T Asesinas Naturales/efectos de los fármacos , Células T Asesinas Naturales/metabolismo , Neoplasias/inmunología , Fenotipo , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...