Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 618(7967): 1049-1056, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37316668

RESUMEN

Chromothripsis, the shattering and imperfect reassembly of one (or a few) chromosome(s)1, is an ubiquitous2 mutational process generating localized and complex chromosomal rearrangements that drive genome evolution in cancer. Chromothripsis can be initiated by mis-segregation errors in mitosis3,4 or DNA metabolism5-7 that lead to entrapment of chromosomes within micronuclei and their subsequent fragmentation in the next interphase or following mitotic entry6,8-10. Here we use inducible degrons to demonstrate that chromothriptically produced pieces of a micronucleated chromosome are tethered together in mitosis by a protein complex consisting of mediator of DNA damage checkpoint 1 (MDC1), DNA topoisomerase II-binding protein 1 (TOPBP1) and cellular inhibitor of PP2A (CIP2A), thereby enabling en masse segregation to the same daughter cell. Such tethering is shown to be crucial for the viability of cells undergoing chromosome mis-segregation and shattering after transient inactivation of the spindle assembly checkpoint. Transient, degron-induced reduction in CIP2A following chromosome micronucleation-dependent chromosome shattering is shown to drive acquisition of segmental deletions and inversions. Analyses of pancancer tumour genomes showed that expression of CIP2A and TOPBP1 was increased overall in cancers with genomic rearrangements, including copy number-neutral chromothripsis with minimal deletions, but comparatively reduced in cancers with canonical chromothripsis in which deletions were frequent. Thus, chromatin-bound tethers maintain the proximity of fragments of a shattered chromosome enabling their re-encapsulation into, and religation within, a daughter cell nucleus to form heritable, chromothriptically rearranged chromosomes found in the majority of human cancers.


Asunto(s)
Núcleo Celular , Segregación Cromosómica , Cromosomas Humanos , Cromotripsis , Mitosis , Humanos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Neoplasias/genética , Cromatina/genética
2.
J Cell Biol ; 222(7)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37213089

RESUMEN

The γ-tubulin ring complex (γTuRC) is the principal nucleator of cellular microtubules, and the microtubule-nucleating activity of the complex is stimulated by binding to the γTuRC-mediated nucleation activator (γTuNA) motif. The γTuNA is part of the centrosomin motif 1 (CM1), which is widely found in γTuRC stimulators, including CDK5RAP2. Here, we show that a conserved segment within CM1 binds to the γTuNA and blocks its association with γTuRCs; therefore, we refer to this segment as the γTuNA inhibitor (γTuNA-In). Mutational disruption of the interaction between the γTuNA and the γTuNA-In results in a loss of autoinhibition, which consequently augments microtubule nucleation on centrosomes and the Golgi complex, the two major microtubule-organizing centers. This also causes centrosome repositioning, leads to defects in Golgi assembly and organization, and affects cell polarization. Remarkably, phosphorylation of the γTuNA-In, probably by Nek2, counteracts the autoinhibition by disrupting the γTuNA‒γTuNA-In interaction. Together, our data reveal an on-site mechanism for controlling γTuNA function.


Asunto(s)
Centrosoma , Centro Organizador de los Microtúbulos , Microtúbulos , Tubulina (Proteína) , Centrosoma/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Fosforilación , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
3.
Methods Mol Biol ; 2557: 543-558, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36512236

RESUMEN

Golgi-derived microtubules constitute an asymmetrical microtubule network that drives polarized transport of vesicles to support cell polarization and directional migration. Golgi-based microtubule nucleation requires the γ-tubulin ring complex (γTuRC), the principal microtubule nucleator in animal cells. In this chapter, we present methods for detecting γTuRC components and associated proteins on the Golgi, examining Golgi-based microtubule nucleation, and measuring the microtubule-nucleating activity of isolated γTuRCs. These approaches have been demonstrated to be effective for assessing the microtubule-organizing function of the Golgi complex.


Asunto(s)
Microtúbulos , Tubulina (Proteína) , Animales , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Aparato de Golgi/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Centrosoma/metabolismo
4.
STAR Protoc ; 3(1): 101227, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35284844

RESUMEN

We present here a protocol to assay the centrosome separation events at late-G2 phase of the cell cycle by immunofluorescence microscopy. We describe the steps required for imaging and measurement of inter-centrosome distance. Here, we use GAS2L1 as an example, but the protocol can be used to test any protein for a role in centrosome separation and cohesion. The steps below are specific for hTERT RPE-1 cell lines, but other adherent cell lines (e.g., U2OS, MRC-5) are also amenable for this protocol. For complete details on the use and execution of this protocol, please refer to Au et al. (2017) and Au et al. (2020).


Asunto(s)
Centrosoma , Microscopía , División Celular , Línea Celular , Centrosoma/metabolismo , Fase G2
5.
J Cell Biol ; 219(5)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32289147

RESUMEN

Centrosome disjunction occurs in late G2 to facilitate bipolar spindle formation and is mediated by the NIMA-related kinase Nek2. Here, we show that GAS2L1, a microtubule- and F-actin-binding protein required for centrosome disjunction, undergoes Nek2-mediated phosphorylation at Ser352 in G2/M. The phosphorylation is essential for centrosome disjunction in late G2 and for proper spindle assembly and faithful chromosome segregation in mitosis. GAS2L1 contains a calponin-homology (CH) domain and a GAS2-related (GAR) domain, which bind to F-actin and microtubules, respectively. Notably, the CH and GAR domains bind to each other to inhibit the functions of both domains, and Ser352 phosphorylation disrupts the interaction between the two domains and relieves the autoinhibition. We dissected the roles of the GAS2L1 phosphorylation and of centrosome-linker disassembly, which is another Nek2-mediated event, and found that these events together trigger centrosome disjunction. Therefore, our findings demonstrate the concerted Nek2 actions that split the centrosomes in late G2.


Asunto(s)
Centrosoma/metabolismo , Proteínas de Microfilamentos/genética , Mitosis/genética , Quinasas Relacionadas con NIMA/genética , Huso Acromático/genética , Actinas/genética , Proteínas de Unión al Calcio/genética , Segregación Cromosómica/genética , Células HEK293 , Células HeLa , Humanos , Microtúbulos/genética , Fosforilación , Dominios Proteicos/genética , Calponinas
6.
Nat Commun ; 8(1): 554, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28916777

RESUMEN

γ-Tubulin ring complexes (γTuRCs) initiate microtubule growth and mediate microtubule attachment at microtubule-organizing centers, such as centrosomes and the Golgi complex. However, the mechanisms that control γTuRC-mediated microtubule nucleation have remained mostly unknown. Here, we show that the DNA polymerase δ catalytic subunit (PolD1) binds directly to γTuRCs and potently inhibits γTuRC-mediated microtubule nucleation. Whereas PolD1 depletion through RNA interference does not influence centrosome-based microtubule growth, the depletion augments microtubule nucleation at the Golgi complex. Conversely, PolD1 overexpression inhibits Golgi-based microtubule nucleation. Golgi-derived microtubules are required for the assembly and maintenance of the proper Golgi structure, and we found that alteration of PolD1 levels affects Golgi structural organization. Moreover, suppression of PolD1 expression impairs Golgi reassembly after nocodazole-induced disassembly and causes defects in Golgi reorientation and directional cell migration. Collectively, these results reveal a mechanism that controls noncentrosomal γTuRC activity and regulates the organization of Golgi-derived microtubules.Microtubule organization requires γ-tubulin ring complexes (γTuRCs), but the mechanisms that control γTuRC-mediated microtubule nucleation are unclear. Here the authors show that the DNA polymerase δ catalytic subunit controls noncentrosomal γTuRC activity and regulates the organization of Golgi-derived microtubules.


Asunto(s)
ADN Polimerasa III/metabolismo , Aparato de Golgi/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Dominio Catalítico , ADN Polimerasa III/química , ADN Polimerasa III/genética , Aparato de Golgi/química , Aparato de Golgi/genética , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Tubulina (Proteína)/genética
7.
J Biol Chem ; 292(18): 7675-7687, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28320860

RESUMEN

Microtubules are polar cytoskeleton filaments that extend via growth at their plus ends. Microtubule plus-end-tracking proteins (+TIPs) accumulate at these growing plus ends to control microtubule dynamics and attachment. The +TIP end-binding protein 1 (EB1) and its homologs possess an autonomous plus-end-tracking mechanism and interact with other known +TIPs, which then recruit those +TIPs to the growing plus ends. A major +TIP class contains the SXIP (Ser-X-Ile-Pro, with X denoting any amino acid residue) motif, known to interact with EB1 and its homologs for plus-end tracking, but the role of SXIP in regulating EB1 activities is unclear. We show here that an interaction of EB1 with the SXIP-containing +TIP CDK5 regulatory subunit-associated protein 2 (CDK5RAP2) regulates several EB1 activities, including microtubule plus-end tracking, dynamics at microtubule plus ends, microtubule and α/ß-tubulin binding, and microtubule polymerization. The SXIP motif fused with a dimerization domain from CDK5RAP2 significantly enhanced EB1 plus-end-tracking and microtubule-polymerizing and bundling activities, but the SXIP motif alone failed to do so. An SXIP-binding-deficient EB1 mutant displayed significantly lower microtubule plus-end tracking than the wild-type protein in transfected cells. These results suggest that EB1 cooperates with CDK5RAP2 and perhaps other SXIP-containing +TIPs in tracking growing microtubule tips. We also generated plus-end-tracking chimeras of CDK5RAP2 and the adenomatous polyposis coli protein (APC) and found that overexpression of the dimerization domains interfered with microtubule plus-end tracking of their respective SXIP-containing chimeras. Our results suggest that disruption of SXIP dimerization enables detailed investigations of microtubule plus-end-associated functions of individual SXIP-containing +TIPs.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Multimerización de Proteína/fisiología , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Secuencias de Aminoácidos , Proteínas de Ciclo Celular , Línea Celular Tumoral , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Proteínas del Tejido Nervioso/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
8.
Dev Cell ; 40(1): 81-94, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28017616

RESUMEN

Mitotic spindle formation and chromosome segregation require timely separation of the two duplicated centrosomes, and this process is initiated in late G2 by centrosome disjunction. Here we report that GAS2L1, a microtubule- and actin-binding protein, associates with the proximal end of mature centrioles and participates in centriole dynamics and centrosome disjunction. GAS2L1 attaches microtubules and actin to centrosomes, and the loss of GAS2L1 inhibits centrosome disjunction in G2 and centrosome splitting induced by depletion of the centrosome linker rootletin. Conversely, GAS2L1 overexpression induces premature centrosome separation, and this activity requires GAS2L1 association with actin, microtubules, and the microtubule end-binding proteins. The centrosome-splitting effect of GAS2L1 is counterbalanced by rootletin, reflecting the opposing actions of GAS2L1 and the centrosome linker. Our work reveals a GAS2L1-mediated centriole-tethering mechanism of microtubules and actin, which provide the forces required for centrosome dynamics and separation.


Asunto(s)
Centriolos/metabolismo , Centrosoma/metabolismo , Proteínas de Microfilamentos/metabolismo , Actinas/metabolismo , Línea Celular , Proteínas del Citoesqueleto/metabolismo , Células HEK293 , Células HeLa , Humanos , Microtúbulos/metabolismo , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...