Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Mol Biol ; 106(3): 271-284, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33864582

RESUMEN

To keep mRNA homeostasis, the RNA degradation, quality control and silencing systems should act in balance in plants. Degradation of normal mRNA starts with deadenylation, then deadenylated transcripts are degraded by the SKI-exosome 3'-5' and/or XRN4 5'-3' exonucleases. RNA quality control systems identify and decay different aberrant transcripts. RNA silencing degrades double-stranded transcripts and homologous mRNAs. It also targets aberrant and silencing prone transcripts. The SKI-exosome is essential for mRNA homeostasis, it functions in normal mRNA degradation and different RNA quality control systems, and in its absence silencing targets normal transcripts. It is highly conserved in eukaryotes, thus recent reports that the plant SKI-exosome is associated with RST1 and RIPR proteins and that, they are required for SKI-exosome-mediated decay of silencing prone transcripts were unexpected. To clarify whether RST1 and RIPR are essential for all SKI-exosome functions or only for the elimination of silencing prone transcripts, degradation of different reporter transcripts was studied in RST1 and RIPR inactivated Nicotiana benthamiana plants. As RST1 and RIPR, like the SKI-exosome, were essential for Non-stop and No-go decay quality control systems, and for RNA silencing- and minimum ORF-mediated decay, we propose that RST1 and RIPR are essential components of plant SKI-exosome supercomplex.


Asunto(s)
Exonucleasas/metabolismo , Exosomas , Proteínas de la Membrana/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Interferencia de ARN , Proteínas de Arabidopsis/genética , Codón Iniciador/genética , Exonucleasas/genética , Regulación de la Expresión Génica de las Plantas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Sistemas de Lectura Abierta , Proteínas de Plantas/genética , Estabilidad del ARN/genética , ARN de Planta/genética , ARN Interferente Pequeño , Nicotiana/genética
2.
FEBS Lett ; 594(21): 3504-3517, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32869294

RESUMEN

Eukaryotic release factor 1 (eRF1) is a translation termination factor that binds to the ribosome at stop codons. The expression of eRF1 is strictly controlled, since its concentration defines termination efficiency and frequency of translational readthrough. Here, we show that eRF1 expression in Neurospora crassa is controlled by an autoregulatory circuit that depends on the specific 3'UTR structure of erf1 mRNA. The stop codon context of erf1 promotes readthrough that protects the mRNA from its 3'UTR-induced nonsense-mediated mRNA decay (NMD). High eRF1 concentration leads to inefficient readthrough, thereby allowing NMD-mediated erf1 degradation. We propose that eRF1 expression is controlled by similar autoregulatory circuits in many fungi and seed plants and discuss the evolution of autoregulatory systems of different translation termination factors.


Asunto(s)
Regiones no Traducidas 3'/genética , Regulación de la Expresión Génica , Intrones/genética , Neurospora crassa/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , Factores de Terminación de Péptidos/biosíntesis , Factores de Terminación de Péptidos/genética , Biosíntesis de Proteínas , Regulación hacia Abajo , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Plant Cell Physiol ; 61(1): 144-157, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31560399

RESUMEN

Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic RNA surveillance mechanism that degrades aberrant mRNAs comprising a premature translation termination codon. The adenosine triphosphate (ATP)-dependent RNA helicase up-frameshift 1 (UPF1) is a major NMD factor in all studied organisms; however, the complexity of this mechanism has not been fully characterized in plants. To identify plant NMD factors, we analyzed UPF1-interacting proteins using tandem affinity purification coupled to mass spectrometry. Canonical members of the NMD pathway were found along with numerous NMD candidate factors, including conserved DEA(D/H)-box RNA helicase homologs of human DDX3, DDX5 and DDX6, translation initiation factors, ribosomal proteins and transport factors. Our functional studies revealed that depletion of DDX3 helicases enhances the accumulation of NMD target reporter mRNAs but does not result in increased protein levels. In contrast, silencing of DDX6 group leads to decreased accumulation of the NMD substrate. The inhibitory effect of DDX6-like helicases on NMD was confirmed by transient overexpression of RH12 helicase. These results indicate that DDX3 and DDX6 helicases in plants have a direct and opposing contribution to NMD and act as functional NMD factors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido/fisiología , ARN Helicasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Codón sin Sentido , ARN Helicasas DEAD-box , Regulación de la Expresión Génica de las Plantas , Humanos , Hojas de la Planta/metabolismo , Proteínas Proto-Oncogénicas , ARN Helicasas/genética , ARN Mensajero , Homología de Secuencia , Nicotiana/genética
4.
Plant Mol Biol ; 100(1-2): 199-214, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30868544

RESUMEN

KEY MESSAGE: Here we demonstrate that the APUM9 RNA-binding protein and its co-factors play a role in mRNA destabilization and how this activity might regulate early plant development. APUM9 is a conserved PUF RNA-binding protein (RBP) under complex transcriptional control mediated by a transposable element (TE) that restricts its expression in Arabidopsis. Currently, little is known about the functional and mechanistic details of the plant PUF regulatory system and the biological relevance of the TE-mediated repression of APUM9 in plant development and stress responses. By combining a range of transient assays, we show here, that APUM9 binding to target transcripts can trigger their rapid decay via its conserved C-terminal RNA-binding domain. APUM9 directly interacts with DCP2, the catalytic subunit of the decapping complex and DCP2 overexpression induces rapid decay of APUM9 targeted mRNAs. We show that APUM9 negatively regulates the expression of ABA signaling genes during seed imbibition, and thereby might contribute to the switch from dormant stage to seed germination. By contrast, strong TE-mediated repression of APUM9 is important for normal plant growth in the later developmental stages. Finally, APUM9 overexpression plants show slightly enhanced heat tolerance suggesting that TE-mediated control of APUM9, might have a role not only in embryonic development, but also in plant adaptation to heat stress conditions.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Secuencia Conservada , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Adaptación Fisiológica , Arabidopsis/fisiología , Dominio Catalítico , Elementos Transponibles de ADN/genética , Desarrollo de la Planta , Latencia en las Plantas , Unión Proteica , Dominios Proteicos , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/metabolismo , Estrés Fisiológico
5.
Plant Sci ; 275: 19-27, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30107878

RESUMEN

RNA quality control systems identify and degrade aberrant mRNAs, thereby preventing the accumulation of faulty proteins. Non-stop decay (NSD) and No-go decay (NGD) are closely related RNA quality control systems that act during translation. NSD degrades mRNAs lacking a stop codon, while NGD recognizes and decays mRNAs that contain translation elongation inhibitory structures. NGD has been intensively studied in yeast and animals but it has not been described in plants yet. In yeast, NGD is induced if the elongating ribosome is stalled by a strong inhibitory structure. Then, the mRNA is cleaved by an unknown nuclease and the cleavage fragments are degraded. Here we show that NGD also operates in plant. We tested several potential NGD cis-elements and found that in plants, unlike in yeast, only long A-stretches induce NGD. These long A-stretches trigger endonucleolytic cleavage, and then the 5' fragments are degraded in a Pelota-, HBS1- and SKI2- dependent manner, while XRN4 eliminates the 3' fragment. We also show that plant NGD operates gradually, the longer the A-stretch, the more efficient the cleavage. Our data suggest that mechanistically NGD is conserved in eukaryotes, although the NGD inducing cis-elements could be different. Moreover, we found that Arabidopsis AtPelota1 functions in both NGD and NSD, while AtPelota2 represses these quality control systems. The function of plant NGD will be discussed.


Asunto(s)
Estabilidad del ARN , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Western Blotting , Inmunoprecipitación , Degradación de ARNm Mediada por Codón sin Sentido/genética , Plantas/genética , Plantas/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN de Planta/genética
6.
Nucleic Acids Res ; 46(9): 4632-4648, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29672715

RESUMEN

Translation-dependent mRNA quality control systems protect the protein homeostasis of eukaryotic cells by eliminating aberrant transcripts and stimulating the decay of their protein products. Although these systems are intensively studied in animals, little is known about the translation-dependent quality control systems in plants. Here, we characterize the mechanism of nonstop decay (NSD) system in Nicotiana benthamiana model plant. We show that plant NSD efficiently degrades nonstop mRNAs, which can be generated by premature polyadenylation, and stop codon-less transcripts, which are produced by endonucleolytic cleavage. We demonstrate that in plants, like in animals, Pelota, Hbs1 and SKI2 proteins are required for NSD, supporting that NSD is an ancient and conserved eukaryotic quality control system. Relevantly, we found that NSD and RNA silencing systems cooperate in plants. Plant silencing predominantly represses target mRNAs through endonucleolytic cleavage in the coding region. Here we show that NSD is required for the elimination of 5' cleavage product of mi- or siRNA-guided silencing complex when the cleavage occurs in the coding region. We also show that NSD and nonsense-mediated decay (NMD) quality control systems operate independently in plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Interferencia de ARN , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , MicroARNs/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/fisiología , Polirribosomas/metabolismo , División del ARN , Nicotiana/genética , Nicotiana/metabolismo
7.
Nucleic Acids Res ; 45(7): 4174-4188, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28062855

RESUMEN

When a ribosome reaches a stop codon, the eukaryotic Release Factor 1 (eRF1) binds to the A site of the ribosome and terminates translation. In yeasts and plants, both over- and underexpression of eRF1 lead to altered phenotype indicating that eRF1 expression should be strictly controlled. However, regulation of eRF1 level is still poorly understood. Here we show that expression of plant eRF1 is controlled by a complex negative autoregulatory circuit, which is based on the unique features of the 3΄untranslated region (3΄UTR) of the eRF1-1 transcript. The stop codon of the eRF1-1 mRNA is in a translational readthrough promoting context, while its 3΄UTR induces nonsense-mediated decay (NMD), a translation termination coupled mRNA degradation mechanism. We demonstrate that readthrough partially protects the eRF1-1 mRNA from its 3΄UTR induced NMD, and that elevated eRF1 levels inhibit readthrough and stimulate NMD. Thus, high eRF1 level leads to reduced eRF1-1 expression, as weakened readthrough fails to protect the eRF1-1 mRNA from the more intense NMD. This eRF1 autoregulatory circuit might serve to finely balance general translation termination efficiency.


Asunto(s)
Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Degradación de ARNm Mediada por Codón sin Sentido , Factores de Terminación de Péptidos/genética , Biosíntesis de Proteínas , Regiones no Traducidas 3' , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Homeostasis , Intrones , Modelos Genéticos , Extensión de la Cadena Peptídica de Translación , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/metabolismo , Plantas Modificadas Genéticamente , ARN Mensajero/metabolismo , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...