Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6757, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117628

RESUMEN

Challenges in classifying recurrent Plasmodium vivax infections constrain surveillance of antimalarial efficacy and transmission. Recurrent infections may arise from activation of dormant liver stages (relapse), blood-stage treatment failure (recrudescence) or reinfection. Molecular inference of familial relatedness (identity-by-descent or IBD) can help resolve the probable origin of recurrences. As whole genome sequencing of P. vivax remains challenging, targeted genotyping methods are needed for scalability. We describe a P. vivax marker discovery framework to identify and select panels of microhaplotypes (multi-allelic markers within small, amplifiable segments of the genome) that can accurately capture IBD. We evaluate panels of 50-250 microhaplotypes discovered in a global set of 615 P. vivax genomes. A candidate global 100-microhaplotype panel exhibits high marker diversity in the Asia-Pacific, Latin America and horn of Africa (median HE = 0.70-0.81) and identifies 89% of the polyclonal infections detected with genome-wide datasets. Data simulations reveal lower error in estimating pairwise IBD using microhaplotypes relative to traditional biallelic SNP barcodes. The candidate global panel also exhibits high accuracy in predicting geographic origin and captures local infection outbreak and bottlenecking events. Our framework is open-source enabling customised microhaplotype discovery and selection, with potential for porting to other species or data resources.


Asunto(s)
Malaria Vivax , Plasmodium vivax , Recurrencia , Plasmodium vivax/genética , Malaria Vivax/parasitología , Malaria Vivax/epidemiología , Humanos , Haplotipos/genética , Polimorfismo de Nucleótido Simple , Genoma de Protozoos/genética , Genotipo
2.
Malar J ; 23(1): 183, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858696

RESUMEN

BACKGROUND: Plasmodium vivax malaria is a leading cause of morbidity in Ethiopia. The first-line treatment for P. vivax is chloroquine (CQ) and primaquine (PQ), but there have been local reports of CQ resistance. A clinical study was conducted to determine the efficacy of CQ for the treatment of P. vivax malaria in southern Ethiopia. METHODS: In 2021, patients with P. vivax mono-infection and uncomplicated malaria were enrolled and treated with 25 mg/kg CQ for 3 consecutive days. Patients were followed for 28 days according to WHO guidelines. The data were analysed using per-protocol (PP) and Kaplan‒Meier (K‒M) analyses to estimate the risk of recurrent P. vivax parasitaemia on day 28. RESULTS: A total of 88 patients were enrolled, 78 (88.6%) of whom completed the 28 days of follow-up. Overall, 76 (97.4%) patients had adequate clinical and parasitological responses, and two patients had late parasitological failures. The initial therapeutic response was rapid, with 100% clearance of asexual parasitaemia within 48 h. CONCLUSION: Despite previous reports of declining chloroquine efficacy against P. vivax, CQ retains high therapeutic efficacy in southern Ethiopia, supporting the current national treatment guidelines. Ongoing clinical monitoring of CQ efficacy supported by advanced molecular methods is warranted to inform national surveillance and ensure optimal treatment guidelines.


Asunto(s)
Antimaláricos , Cloroquina , Malaria Vivax , Malaria Vivax/tratamiento farmacológico , Cloroquina/uso terapéutico , Etiopía , Humanos , Antimaláricos/uso terapéutico , Masculino , Adulto , Femenino , Adolescente , Adulto Joven , Niño , Persona de Mediana Edad , Preescolar , Plasmodium vivax/efectos de los fármacos , Resultado del Tratamiento , Anciano , Parasitemia/tratamiento farmacológico
3.
Trends Parasitol ; 40(2): 147-163, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38129280

RESUMEN

Over recent years, progress in molecular markers for genotyping malaria parasites has enabled informative studies of epidemiology and transmission dynamics. Results have highlighted the value of these tools for surveillance to support malaria control and elimination strategies. There are many different types and panels of markers available for malaria parasite genotyping, and for end users, the nuances of these markers with respect to 'use case', resolution, and accuracy, are not well defined. This review clarifies issues surrounding different molecular markers and their application to malaria control and elimination. We describe available marker panels, use cases, implications for different transmission settings, limitations, access, cost, and data accuracy. The information provided can be used as a guide for molecular epidemiology and surveillance of malaria.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Malaria/epidemiología , Epidemiología Molecular , Biomarcadores , Malaria Falciparum/parasitología
4.
J Travel Med ; 31(3)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38127641

RESUMEN

BACKGROUND: Malaria continues to pose a significant burden in endemic countries, many of which lack access to molecular surveillance. Insights from malaria cases in travellers returning to non-endemic areas can provide valuable data to inform endemic country programmes. To evaluate the potential for novel global insights into malaria, we examined epidemiological and molecular data from imported malaria cases to Australia. METHODS: We analysed malaria cases reported in Australia from 2012 to 2022 using National Notifiable Disease Surveillance System data. Molecular data on imported malaria cases were obtained from literature searches. RESULTS: Between 2012 and 2022, 3204 malaria cases were reported in Australia. Most cases (69%) were male and 44% occurred in young adults aged 20-39 years. Incidence rates initially declined between 2012 and 2015, then increased until 2019. During 2012-2019, the incidence in travellers ranged from 1.34 to 7.71 per 100 000 trips. Cases were primarily acquired in Sub-Saharan Africa (n = 1433; 45%), Oceania (n = 569; 18%) and Southern and Central Asia (n = 367; 12%). The most common countries of acquisition were Papua New Guinea (n = 474) and India (n = 277). Plasmodium falciparum accounted for 58% (1871/3204) of cases and was predominantly acquired in Sub-Saharan Africa, and Plasmodium vivax accounted for 32% (1016/3204), predominantly from Oceania and Asia. Molecular studies of imported malaria cases to Australia identified genetic mutations and deletions associated with drug resistance and false-negative rapid diagnostic test results, and led to the establishment of reference genomes for P. vivax and Plasmodium malariae. CONCLUSIONS: Our analysis highlights the continuing burden of imported malaria into Australia. Molecular studies have offered valuable insights into drug resistance and diagnostic limitations, and established reference genomes. Integrating molecular data into national surveillance systems could provide important infectious disease intelligence to optimize treatment guidelines for returning travellers and support endemic country surveillance programmes.


Asunto(s)
Malaria Vivax , Malaria , Adulto Joven , Masculino , Humanos , Femenino , Viaje , Malaria/diagnóstico , Malaria/tratamiento farmacológico , Malaria/epidemiología , Plasmodium falciparum , Australia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...