Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nat Med ; 30(5): 1384-1394, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38740997

RESUMEN

How human genetic variation contributes to vaccine effectiveness in infants is unclear, and data are limited on these relationships in populations with African ancestries. We undertook genetic analyses of vaccine antibody responses in infants from Uganda (n = 1391), Burkina Faso (n = 353) and South Africa (n = 755), identifying associations between human leukocyte antigen (HLA) and antibody response for five of eight tested antigens spanning pertussis, diphtheria and hepatitis B vaccines. In addition, through HLA typing 1,702 individuals from 11 populations of African ancestry derived predominantly from the 1000 Genomes Project, we constructed an imputation resource, fine-mapping class II HLA-DR and DQ associations explaining up to 10% of antibody response variance in our infant cohorts. We observed differences in the genetic architecture of pertussis antibody response between the cohorts with African ancestries and an independent cohort with European ancestry, but found no in silico evidence of differences in HLA peptide binding affinity or breadth. Using immune cell expression quantitative trait loci datasets derived from African-ancestry samples from the 1000 Genomes Project, we found evidence of differential HLA-DRB1 expression correlating with inferred protection from pertussis following vaccination. This work suggests that HLA-DRB1 expression may play a role in vaccine response and should be considered alongside peptide selection to improve vaccine design.


Asunto(s)
Cadenas HLA-DRB1 , Humanos , Cadenas HLA-DRB1/genética , Cadenas HLA-DRB1/inmunología , Lactante , Población Negra/genética , Vacunas contra Hepatitis B/inmunología , Sitios de Carácter Cuantitativo , Masculino , Femenino , Uganda , Formación de Anticuerpos/genética , Formación de Anticuerpos/inmunología , Vacuna contra la Tos Ferina/inmunología , Vacuna contra la Tos Ferina/genética , Vacunación , Tos Ferina/prevención & control , Tos Ferina/inmunología , Tos Ferina/genética
2.
Nature ; 622(7984): 775-783, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37821706

RESUMEN

Latin America continues to be severely underrepresented in genomics research, and fine-scale genetic histories and complex trait architectures remain hidden owing to insufficient data1. To fill this gap, the Mexican Biobank project genotyped 6,057 individuals from 898 rural and urban localities across all 32 states in Mexico at a resolution of 1.8 million genome-wide markers with linked complex trait and disease information creating a valuable nationwide genotype-phenotype database. Here, using ancestry deconvolution and inference of identity-by-descent segments, we inferred ancestral population sizes across Mesoamerican regions over time, unravelling Indigenous, colonial and postcolonial demographic dynamics2-6. We observed variation in runs of homozygosity among genomic regions with different ancestries reflecting distinct demographic histories and, in turn, different distributions of rare deleterious variants. We conducted genome-wide association studies (GWAS) for 22 complex traits and found that several traits are better predicted using the Mexican Biobank GWAS compared to the UK Biobank GWAS7,8. We identified genetic and environmental factors associating with trait variation, such as the length of the genome in runs of homozygosity as a predictor for body mass index, triglycerides, glucose and height. This study provides insights into the genetic histories of individuals in Mexico and dissects their complex trait architectures, both crucial for making precision and preventive medicine initiatives accessible worldwide.


Asunto(s)
Bancos de Muestras Biológicas , Genética Médica , Genoma Humano , Genómica , Hispánicos o Latinos , Humanos , Glucemia/genética , Glucemia/metabolismo , Estatura/genética , Índice de Masa Corporal , Interacción Gen-Ambiente , Marcadores Genéticos/genética , Estudio de Asociación del Genoma Completo , Hispánicos o Latinos/clasificación , Hispánicos o Latinos/genética , Homocigoto , México , Fenotipo , Triglicéridos/sangre , Triglicéridos/genética , Reino Unido , Genoma Humano/genética
3.
medRxiv ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37425840

RESUMEN

Hepatitis B virus (HBV) vaccine escape mutants (VEM) are increasingly described, threatening progress in control of this virus worldwide. Here we studied the relationship between host genetic variation, vaccine immunogenicity and viral sequences implicating VEM emergence. In a cohort of 1,096 Bangladeshi children, we identified human leukocyte antigen (HLA) variants associated with response vaccine antigens. Using an HLA imputation panel with 9,448 south Asian individuals DPB1*04:01 was associated with higher HBV antibody responses (p=4.5×10-30). The underlying mechanism is a result of higher affinity binding of HBV surface antigen epitopes to DPB1*04:01 dimers. This is likely a result of evolutionary pressure at the HBV surface antigen 'a-determinant' segment incurring VEM specific to HBV. Prioritizing pre-S isoform HBV vaccines may tackle the rise of HBV vaccine evasion.

4.
J Alzheimers Dis ; 92(1): 295-309, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36744344

RESUMEN

BACKGROUND: Persisting symptoms and increased mortality after SARS-CoV-2 infection has been described in COVID-19 survivors. OBJECTIVE: We examined longer-term mortality in patients with dementia and SARS-CoV-2 infection. METHODS: A retrospective matched case-control study of 165 patients with dementia who survived an acute hospital admission with COVID-19 infection, and 1325 patients with dementia who survived a hospital admission but without SARS-CoV-2 infection. Potential risk factors investigated included socio-demographic factors, clinical features, and results of investigations. Data were fitted using a Cox proportional hazard model. RESULTS: Compared to patients with dementia but without SARS-CoV-2 infection, people with dementia and SARS-CoV-2 infection had a 4.4-fold risk of death (adjusted hazard ratio [aHR] = 4.44, 95% confidence interval [CI] 3.13-6.30) even beyond the acute phase of infection. This excess mortality could be seen up to 125 days after initial recovery but was not elevated beyond this time. Risk factors for COVID-19-associated mortality included prescription of antipsychotics (aHR = 3.06, 95% CI 1.40-6.69) and benzodiazepines (aHR = 3.00, 95% CI 1.28-7.03). Abnormalities on investigation associated with increased mortality included high white cell count (aHR = 1.21, 95% CI 1.04-1.39), higher absolute neutrophil count (aHR = 1.28, 95% CI 1.12-1.46), higher C-reactive protein (aHR = 1.01, 95% CI 1.00-1.02), higher serum sodium (aHR = 1.09, 95% CI 1.01-1.19), and higher ionized calcium (aHR = 1.03, 95% CI 1.00-1.06). The post-acute COVID mortality could be modeled for the first 120 days after recovery with a balanced accuracy of 87.2%. CONCLUSION: We found an increased mortality in patients with dementia beyond the acute phase of illness. We identified several investigation results associated with increased mortality, and increased mortality in patients prescribed antipsychotics or benzodiazepines.


Asunto(s)
COVID-19 , Demencia , Humanos , Estudios Retrospectivos , SARS-CoV-2 , Alta del Paciente , Estudios de Casos y Controles , Factores de Riesgo
5.
PLoS Pathog ; 18(9): e1010312, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36121873

RESUMEN

Leprosy is a chronic infection of the skin and peripheral nerves caused by Mycobacterium leprae. Despite recent improvements in disease control, leprosy remains an important cause of infectious disability globally. Large-scale genetic association studies in Chinese, Vietnamese and Indian populations have identified over 30 susceptibility loci for leprosy. There is a significant burden of leprosy in Africa, however it is uncertain whether the findings of published genetic association studies are generalizable to African populations. To address this, we conducted a genome-wide association study (GWAS) of leprosy in Malawian (327 cases, 436 controls) and Malian (247 cases, 368 controls) individuals. In that analysis, we replicated four risk loci previously reported in China, Vietnam and India; MHC Class I and II, LACC1 and SLC29A3. We further identified a novel leprosy susceptibility locus at 10q24 (rs2015583; combined p = 8.81 × 10-9; OR = 0.51 [95% CI 0.40 - 0.64]). Using publicly-available data we characterise regulatory activity at this locus, identifying ACTR1A as a candidate mediator of leprosy risk. This locus shows evidence of recent positive selection and demonstrates pleiotropy with established risk loci for inflammatory bowel disease and childhood-onset asthma. A shared genetic architecture for leprosy and inflammatory bowel disease has been previously described. We expand on this, strengthening the hypothesis that selection pressure driven by leprosy has shaped the evolution of autoimmune and atopic disease in modern populations. More broadly, our data highlights the importance of defining the genetic architecture of disease across genetically diverse populations, and that disease insights derived from GWAS in one population may not translate to all affected populations.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Lepra , Humanos , Niño , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Malaui , Malí , Lepra/genética , Proteínas de Transporte de Nucleósidos/genética
6.
Science ; 377(6601): 72-79, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35771911

RESUMEN

Micronesia began to be peopled earlier than other parts of Remote Oceania, but the origins of its inhabitants remain unclear. We generated genome-wide data from 164 ancient and 112 modern individuals. Analysis reveals five migratory streams into Micronesia. Three are East Asian related, one is Polynesian, and a fifth is a Papuan source related to mainland New Guineans that is different from the New Britain-related Papuan source for southwest Pacific populations but is similarly derived from male migrants ~2500 to 2000 years ago. People of the Mariana Archipelago may derive all of their precolonial ancestry from East Asian sources, making them the only Remote Oceanians without Papuan ancestry. Female-inherited mitochondrial DNA was highly differentiated across early Remote Oceanian communities but homogeneous within, implying matrilocal practices whereby women almost never raised their children in communities different from the ones in which they grew up.


Asunto(s)
ADN Antiguo , ADN Mitocondrial , Migración Humana , Pueblo Asiatico/genética , Niño , ADN Mitocondrial/genética , Femenino , Historia Antigua , Migración Humana/historia , Humanos , Masculino , Micronesia , Oceanía
7.
Nature ; 597(7877): 522-526, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34552258

RESUMEN

Polynesia was settled in a series of extraordinary voyages across an ocean spanning one third of the Earth1, but the sequences of islands settled remain unknown and their timings disputed. Currently, several centuries separate the dates suggested by different archaeological surveys2-4. Here, using genome-wide data from merely 430 modern individuals from 21 key Pacific island populations and novel ancestry-specific computational analyses, we unravel the detailed genetic history of this vast, dispersed island network. Our reconstruction of the branching Polynesian migration sequence reveals a serial founder expansion, characterized by directional loss of variants, that originated in Samoa and spread first through the Cook Islands (Rarotonga), then to the Society (Totaiete ma) Islands (11th century), the western Austral (Tuha'a Pae) Islands and Tuamotu Archipelago (12th century), and finally to the widely separated, but genetically connected, megalithic statue-building cultures of the Marquesas (Te Henua 'Enana) Islands in the north, Raivavae in the south, and Easter Island (Rapa Nui), the easternmost of the Polynesian islands, settled in approximately AD 1200 via Mangareva.


Asunto(s)
Genoma Humano/genética , Genómica , Migración Humana/historia , Nativos de Hawái y Otras Islas del Pacífico/genética , Femenino , Historia Medieval , Humanos , Masculino , Polinesia
8.
Wellcome Open Res ; 5: 181, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33283055

RESUMEN

Background: Laboratory diagnosis of SARS-CoV-2 infection (the cause of COVID-19) uses PCR to detect viral RNA (vRNA) in respiratory samples. SARS-CoV-2 RNA has also been detected in other sample types, but there is limited understanding of the clinical or laboratory significance of its detection in blood. Methods: We undertook a systematic literature review to assimilate the evidence for the frequency of vRNA in blood, and to identify associated clinical characteristics. We performed RT-PCR in serum samples from a UK clinical cohort of acute and convalescent COVID-19 cases (n=212), together with convalescent plasma samples collected by NHS Blood and Transplant (NHSBT) (n=462 additional samples). To determine whether PCR-positive blood samples could pose an infection risk, we attempted virus isolation from a subset of RNA-positive samples. Results: We identified 28 relevant studies, reporting SARS-CoV-2 RNA in 0-76% of blood samples; pooled estimate 10% (95%CI 5-18%). Among serum samples from our clinical cohort, 27/212 (12.7%) had SARS-CoV-2 RNA detected by RT-PCR. RNA detection occurred in samples up to day 20 post symptom onset, and was associated with more severe disease (multivariable odds ratio 7.5). Across all samples collected ≥28 days post symptom onset, 0/494 (0%, 95%CI 0-0.7%) had vRNA detected. Among our PCR-positive samples, cycle threshold (ct) values were high (range 33.5-44.8), suggesting low vRNA copy numbers. PCR-positive sera inoculated into cell culture did not produce any cytopathic effect or yield an increase in detectable SARS-CoV-2 RNA. Conclusions: vRNA was detectable at low viral loads in a minority of serum samples collected in acute infection, but was not associated with infectious SARS-CoV-2 (within the limitations of the assays used). This work helps to inform biosafety precautions for handling blood products from patients with current or previous COVID-19.

9.
Genes (Basel) ; 11(12)2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256119

RESUMEN

Although the invention of right heart catheterisation in the 1950s enabled accurate clinical diagnosis of pulmonary arterial hypertension (PAH), it was not until 2000 when the landmark discovery of the causative role of bone morphogenetic protein receptor type II (BMPR2) mutations shed new light on the pathogenesis of PAH. Since then several genes have been discovered, which now account for around 25% of cases with the clinical diagnosis of idiopathic PAH. Despite the ongoing efforts, in the majority of patients the cause of the disease remains elusive, a phenomenon often referred to as "missing heritability". In this review, we discuss research approaches to uncover the genetic architecture of PAH starting with forward phenotyping, which in a research setting should focus on stable intermediate phenotypes, forward and reverse genetics, and finally reverse phenotyping. We then discuss potential sources of "missing heritability" and how functional genomics and multi-omics methods are employed to tackle this problem.


Asunto(s)
Hipertensión Arterial Pulmonar/genética , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Predisposición Genética a la Enfermedad/genética , Humanos , Mutación/genética , Fenotipo
10.
Front Immunol ; 11: 2136, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072076

RESUMEN

An incomplete ascertainment of genetic variation within the highly polymorphic immunoglobulin heavy chain locus (IGH) has hindered our ability to define genetic factors that influence antibody-mediated processes. Due to locus complexity, standard high-throughput approaches have failed to accurately and comprehensively capture IGH polymorphism. As a result, the locus has only been fully characterized two times, severely limiting our knowledge of human IGH diversity. Here, we combine targeted long-read sequencing with a novel bioinformatics tool, IGenotyper, to fully characterize IGH variation in a haplotype-specific manner. We apply this approach to eight human samples, including a haploid cell line and two mother-father-child trios, and demonstrate the ability to generate high-quality assemblies (>98% complete and >99% accurate), genotypes, and gene annotations, identifying 2 novel structural variants and 15 novel IGH alleles. We show multiplexing allows for scaling of the approach without impacting data quality, and that our genotype call sets are more accurate than short-read (>35% increase in true positives and >97% decrease in false-positives) and array/imputation-based datasets. This framework establishes a desperately needed foundation for leveraging IG genomic data to study population-level variation in antibody-mediated immunity, critical for bettering our understanding of disease risk, and responses to vaccines and therapeutics.


Asunto(s)
Biología Computacional/métodos , Genes de Inmunoglobulinas , Variación Genética , Técnicas de Genotipaje , Haplotipos/genética , Cadenas Pesadas de Inmunoglobulina/genética , Polimorfismo Genético , Línea Celular , Presentación de Datos , Conjuntos de Datos como Asunto , Familia , Biblioteca de Genes , Variación Estructural del Genoma , Humanos , Anotación de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Interfaz Usuario-Computador , Flujo de Trabajo
11.
Euro Surveill ; 25(42)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33094717

RESUMEN

SARS-CoV-2 IgG screening of 1,000 antenatal serum samples in the Oxford area, United Kingdom, between 14 April and 15 June 2020, yielded a 5.3% seroprevalence, mirroring contemporaneous regional data. Among the 53 positive samples, 39 showed in vitro neutralisation activity, correlating with IgG titre (Pearson's correlation p<0.0001). While SARS-CoV-2 seroprevalence in pregnancy cohorts could potentially inform population surveillance, clinical correlates of infection and immunity in pregnancy, and antenatal epidemiology evolution over time need further study.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Betacoronavirus/inmunología , Infecciones por Coronavirus/epidemiología , Inmunoglobulina G/sangre , Pandemias , Neumonía Viral/epidemiología , Vigilancia de la Población , Complicaciones Infecciosas del Embarazo/sangre , Primer Trimestre del Embarazo/sangre , Adolescente , Adulto , COVID-19 , Estudios de Cohortes , Infecciones por Coronavirus/sangre , Inglaterra/epidemiología , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Persona de Mediana Edad , Neumonía Viral/sangre , Embarazo , Diagnóstico Prenatal , Prevalencia , SARS-CoV-2 , Estudios Seroepidemiológicos , Método Simple Ciego , Adulto Joven
12.
Nature ; 583(7817): 572-577, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32641827

RESUMEN

The possibility of voyaging contact between prehistoric Polynesian and Native American populations has long intrigued researchers. Proponents have pointed to the existence of New World crops, such as the sweet potato and bottle gourd, in the Polynesian archaeological record, but nowhere else outside the pre-Columbian Americas1-6, while critics have argued that these botanical dispersals need not have been human mediated7. The Norwegian explorer Thor Heyerdahl controversially suggested that prehistoric South American populations had an important role in the settlement of east Polynesia and particularly of Easter Island (Rapa Nui)2. Several limited molecular genetic studies have reached opposing conclusions, and the possibility continues to be as hotly contested today as it was when first suggested8-12. Here we analyse genome-wide variation in individuals from islands across Polynesia for signs of Native American admixture, analysing 807 individuals from 17 island populations and 15 Pacific coast Native American groups. We find conclusive evidence for prehistoric contact of Polynesian individuals with Native American individuals (around AD 1200) contemporaneous with the settlement of remote Oceania13-15. Our analyses suggest strongly that a single contact event occurred in eastern Polynesia, before the settlement of Rapa Nui, between Polynesian individuals and a Native American group most closely related to the indigenous inhabitants of present-day Colombia.


Asunto(s)
Flujo Génico/genética , Genoma Humano/genética , Migración Humana/historia , Indígenas Centroamericanos/genética , Indígenas Sudamericanos/genética , Islas , Nativos de Hawái y Otras Islas del Pacífico/genética , América Central/etnología , Colombia/etnología , Europa (Continente)/etnología , Genética de Población , Historia Medieval , Humanos , Polimorfismo de Nucleótido Simple/genética , Polinesia , América del Sur/etnología , Factores de Tiempo
13.
Sci Rep ; 10(1): 9004, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488134

RESUMEN

Rheumatic heart disease (RHD), an autoinflammatory heart disease, was recently declared a global health priority by the World Health Organization. Here we report a genome-wide association study (GWAS) of RHD susceptibility in 1,163 South Asians (672 cases; 491 controls) recruited in India and Fiji. We analysed directly obtained and imputed genotypes, and followed-up associated loci in 1,459 Europeans (150 cases; 1,309 controls) from the UK Biobank study. We identify a novel susceptibility signal in the class III region of the human leukocyte antigen (HLA) complex in the South Asian dataset that clearly replicates in the Europeans (rs201026476; combined odds ratio 1.81, 95% confidence intervals 1.51-2.18, P = 3.48×10-10). Importantly, this signal remains despite conditioning on the lead class I and class II variants (P = 0.00033). These findings suggest the class III region is a key determinant of RHD susceptibility offering important new insight into pathogenesis while partly explaining the inconsistency of earlier reports.


Asunto(s)
Antígenos HLA/genética , Cardiopatía Reumática/genética , Pueblo Asiatico/genética , Estudios de Casos y Controles , Fiji , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , India , Polimorfismo de Nucleótido Simple , Población Blanca/genética
14.
Wellcome Open Res ; 5: 139, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33748431

RESUMEN

Background: The COVID-19 pandemic caused >1 million infections during January-March 2020. There is an urgent need for reliable antibody detection approaches to support diagnosis, vaccine development, safe release of individuals from quarantine, and population lock-down exit strategies. We set out to evaluate the performance of ELISA and lateral flow immunoassay (LFIA) devices. Methods: We tested plasma for COVID (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2) IgM and IgG antibodies by ELISA and using nine different LFIA devices. We used a panel of plasma samples from individuals who have had confirmed COVID infection based on a PCR result (n=40), and pre-pandemic negative control samples banked in the UK prior to December-2019 (n=142). Results: ELISA detected IgM or IgG in 34/40 individuals with a confirmed history of COVID infection (sensitivity 85%, 95%CI 70-94%), vs. 0/50 pre-pandemic controls (specificity 100% [95%CI 93-100%]). IgG levels were detected in 31/31 COVID-positive individuals tested ≥10 days after symptom onset (sensitivity 100%, 95%CI 89-100%). IgG titres rose during the 3 weeks post symptom onset and began to fall by 8 weeks, but remained above the detection threshold. Point estimates for the sensitivity of LFIA devices ranged from 55-70% versus RT-PCR and 65-85% versus ELISA, with specificity 95-100% and 93-100% respectively. Within the limits of the study size, the performance of most LFIA devices was similar. Conclusions: Currently available commercial LFIA devices do not perform sufficiently well for individual patient applications. However, ELISA can be calibrated to be specific for detecting and quantifying SARS-CoV-2 IgM and IgG and is highly sensitive for IgG from 10 days following first symptoms.

15.
Genes Immun ; 21(1): 63-70, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31462703

RESUMEN

Invasive group A streptococcal (GAS) disease is uncommon but carries a high case-fatality rate relative to other infectious diseases. Given the ubiquity of mild GAS infections, it remains unclear why healthy individuals will occasionally develop life-threatening infections, raising the possibility of host genetic predisposition. Here, we present the results of a case-control study including 43 invasive GAS cases and 1540 controls. Using HLA imputation and linear mixed models, we find each copy of the HLA-DQA1*01:03 allele associates with a twofold increased risk of disease (odds ratio 2.3, 95% confidence interval 1.3-4.4, P = 0.009), an association which persists with classical HLA typing of a subset of cases and analysis with an alternative large control dataset with validated HLA data. Moreover, we propose the association is driven by the allele itself rather than the background haplotype. Overall this finding provides impetus for further investigation of the immunogenetic basis of this devastating bacterial disease.


Asunto(s)
Antígenos HLA/genética , Cadenas alfa de HLA-DQ/genética , Infecciones Estreptocócicas/inmunología , Adulto , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes , Genes MHC Clase II , Predisposición Genética a la Enfermedad/genética , Antígenos HLA/inmunología , Cadenas alfa de HLA-DQ/metabolismo , Haplotipos , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidad
16.
Nat Ecol Evol ; 2(4): 731-740, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29487365

RESUMEN

Recent genomic analyses show that the earliest peoples reaching Remote Oceania-associated with Austronesian-speaking Lapita culture-were almost completely East Asian, without detectable Papuan ancestry. However, Papuan-related genetic ancestry is found across present-day Pacific populations, indicating that peoples from Near Oceania have played a significant, but largely unknown, ancestral role. Here, new genome-wide data from 19 ancient South Pacific individuals provide direct evidence of a so-far undescribed Papuan expansion into Remote Oceania starting ~2,500 yr BP, far earlier than previously estimated and supporting a model from historical linguistics. New genome-wide data from 27 contemporary ni-Vanuatu demonstrate a subsequent and almost complete replacement of Lapita-Austronesian by Near Oceanian ancestry. Despite this massive demographic change, incoming Papuan languages did not replace Austronesian languages. Population replacement with language continuity is extremely rare-if not unprecedented-in human history. Our analyses show that rather than one large-scale event, the process was incremental and complex, with repeated migrations and sex-biased admixture with peoples from the Bismarck Archipelago.


Asunto(s)
Lenguaje , Dinámica Poblacional , ADN Antiguo/análisis , Genoma Humano , Humanos , Oceanía
17.
Curr Biol ; 28(7): 1157-1165.e7, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29501328

RESUMEN

Ancient DNA from Vanuatu and Tonga dating to about 2,900-2,600 years ago (before present, BP) has revealed that the "First Remote Oceanians" associated with the Lapita archaeological culture were directly descended from the population that, beginning around 5000 BP, spread Austronesian languages from Taiwan to the Philippines, western Melanesia, and eventually Remote Oceania. Thus, ancestors of the First Remote Oceanians must have passed by the Papuan-ancestry populations they encountered in New Guinea, the Bismarck Archipelago, and the Solomon Islands with minimal admixture [1]. However, all present-day populations in Near and Remote Oceania harbor >25% Papuan ancestry, implying that additional eastward migration must have occurred. We generated genome-wide data for 14 ancient individuals from Efate and Epi Islands in Vanuatu from 2900-150 BP, as well as 185 present-day individuals from 18 islands. We find that people of almost entirely Papuan ancestry arrived in Vanuatu by around 2300 BP, most likely reflecting migrations a few hundred years earlier at the end of the Lapita period, when there is also evidence of changes in skeletal morphology and cessation of long-distance trade between Near and Remote Oceania [2, 3]. Papuan ancestry was subsequently diluted through admixture but remains at least 80%-90% in most islands. Through a fine-grained analysis of ancestry profiles, we show that the Papuan ancestry in Vanuatu derives from the Bismarck Archipelago rather than the geographically closer Solomon Islands. However, the Papuan ancestry in Polynesia-the most remote Pacific islands-derives from different sources, documenting a third stream of migration from Near to Remote Oceania.


Asunto(s)
ADN Antiguo/análisis , Genética de Población , Genoma Humano , Migración Humana/estadística & datos numéricos , Nativos de Hawái y Otras Islas del Pacífico/genética , Dinámica Poblacional , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Oceanía , Filogenia
18.
Science ; 357(6356): 1160-1163, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28912245

RESUMEN

New Guinea shows human occupation since ~50 thousand years ago (ka), independent adoption of plant cultivation ~10 ka, and great cultural and linguistic diversity today. We performed genome-wide single-nucleotide polymorphism genotyping on 381 individuals from 85 language groups in Papua New Guinea and find a sharp divide originating 10 to 20 ka between lowland and highland groups and a lack of non-New Guinean admixture in the latter. All highlanders share ancestry within the last 10 thousand years, with major population growth in the same period, suggesting population structure was reshaped following the Neolithic lifestyle transition. However, genetic differentiation between groups in Papua New Guinea is much stronger than in comparable regions in Eurasia, demonstrating that such a transition does not necessarily limit the genetic and linguistic diversity of human societies.


Asunto(s)
Etnicidad/genética , Polimorfismo de Nucleótido Simple , Etnicidad/historia , Estructuras Genéticas , Genotipo , Técnicas de Genotipaje , Historia Antigua , Humanos , Lenguaje , Estilo de Vida/historia , Lingüística , Ocupaciones/historia , Papúa Nueva Guinea/etnología
19.
Nat Commun ; 8: 14946, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28492228

RESUMEN

The indigenous populations of the South Pacific experience a high burden of rheumatic heart disease (RHD). Here we report a genome-wide association study (GWAS) of RHD susceptibility in 2,852 individuals recruited in eight Oceanian countries. Stratifying by ancestry, we analysed genotyped and imputed variants in Melanesians (607 cases and 1,229 controls) before follow-up of suggestive loci in three further ancestral groups: Polynesians, South Asians and Mixed or other populations (totalling 399 cases and 617 controls). We identify a novel susceptibility signal in the immunoglobulin heavy chain (IGH) locus centring on a haplotype of nonsynonymous variants in the IGHV4-61 gene segment corresponding to the IGHV4-61*02 allele. We show each copy of IGHV4-61*02 is associated with a 1.4-fold increase in the risk of RHD (odds ratio 1.43, 95% confidence intervals 1.27-1.61, P=4.1 × 10-9). These findings provide new insight into the role of germline variation in the IGH locus in disease susceptibility.


Asunto(s)
Alelos , Predisposición Genética a la Enfermedad , Cadenas Pesadas de Inmunoglobulina/genética , Cardiopatía Reumática/genética , Adulto , Pueblo Asiatico , Estudios de Casos y Controles , Niño , Femenino , Expresión Génica , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Cadenas Pesadas de Inmunoglobulina/inmunología , Masculino , Nativos de Hawái y Otras Islas del Pacífico , Oceanía , Oportunidad Relativa , Cardiopatía Reumática/etnología , Cardiopatía Reumática/inmunología , Cardiopatía Reumática/patología , Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA