Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 628(8007): 299-305, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38438066

RESUMEN

Perovskite solar cells (PSCs) are among the most promising photovoltaic technologies owing to their exceptional optoelectronic properties1,2. However, the lower efficiency, poor stability and reproducibility issues of large-area PSCs compared with laboratory-scale PSCs are notable drawbacks that hinder their commercialization3. Here we report a synergistic dopant-additive combination strategy using methylammonium chloride (MACl) as the dopant and a Lewis-basic ionic-liquid additive, 1,3-bis(cyanomethyl)imidazolium chloride ([Bcmim]Cl). This strategy effectively inhibits the degradation of the perovskite precursor solution (PPS), suppresses the aggregation of MACl and results in phase-homogeneous and stable perovskite films with high crystallinity and fewer defects. This approach enabled the fabrication of perovskite solar modules (PSMs) that achieved a certified efficiency of 23.30% and ultimately stabilized at 22.97% over a 27.22-cm2 aperture area, marking the highest certified PSM performance. Furthermore, the PSMs showed long-term operational stability, maintaining 94.66% of the initial efficiency after 1,000 h under continuous one-sun illumination at room temperature. The interaction between [Bcmim]Cl and MACl was extensively studied to unravel the mechanism leading to an enhancement of device properties. Our approach holds substantial promise for bridging the benchtop-to-rooftop gap and advancing the production and commercialization of large-area perovskite photovoltaics.

2.
Environ Toxicol Pharmacol ; 106: 104353, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38163529

RESUMEN

A substantial increase in engineered nanoparticles in consumer products has been observed, heightening human and environmental exposure. Inhalation represents the primary route of human exposure, necessitating a focus on lung toxicity studies. However, to avoid ethical concerns the use of in vitro models is an efficient alternative to in vivo models. This study utilized an in vitro human alveolar barrier model at air-liquid-interface with four cell lines, for evaluating the biological effects of different gold nanoparticles. Exposure to PEGylated gold nanospheres, nanorods, and nanostars did not significantly impact viability after 24 h, yet all AuNPs induced cytotoxicity in the form of membrane integrity impairment. Gold quantification revealed cellular uptake and transport. Transcriptomic analysis identified gene expression changes, particularly related to the enhancement of immune cells. Despite limited impact, distinct effects were observed, emphasizing the influence of nanoparticles physicochemical parameters while demonstrating the model's efficacy in investigating particle biological effects.


Asunto(s)
Oro , Nanopartículas del Metal , Humanos , Oro/toxicidad , Oro/química , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Línea Celular
3.
ACS Catal ; 13(22): 15182-15193, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38026816

RESUMEN

Thin films of cobalt porphyrin conjugated polymers bearing different substituents are prepared by oxidative chemical vapor deposition (oCVD) and investigated as heterogeneous electrocatalysts for the oxygen evolution reaction (OER). Interestingly, the electrocatalytic activity originates from polymer-derived, highly transparent Co(Fe)Ox species formed under operational alkaline conditions. Structural, compositional, electrical, and electrochemical characterizations reveal that the newly formed active catalyst greatly benefited from both the polymeric conformation of the porphyrin-based thin film and the inclusion of the iron-based species originating from the oCVD reaction. High-resolution mass spectrometry analyses combined with density functional theory (DFT) calculations showed that a close relationship exists between the porphyrin substituent, the extension of the π-conjugated system cobalt porphyrin conjugated polymer, and the dynamics of the polymer conversion leading to catalytically active Co(Fe)Ox species. This work evidences the precatalytic role of cobalt porphyrin conjugated polymers and uncovers the benefit of extended π-conjugation of the molecular matrix and iron inclusion on the formation and performance of the true active catalyst.

4.
Anal Chem ; 95(16): 6568-6576, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37027489

RESUMEN

Perfluorooctanoic acid (PFOA) is a synthetic perfluorinated chemical classified as a persistent organic pollutant. PFOA has been linked to many toxic effects, including liver injury. Many studies report that PFOA exposure alters serum and hepatic lipid metabolism. However, lipidomic pathways altered by PFOA exposure are largely unknown and only a few lipid classes, mostly triacylglycerol (TG), are usually considered in lipid analysis. Here, we performed a global lipidomic analysis on the liver of PFOA-exposed (high-dose and short-duration) and control mice by combining three mass spectrometry (MS) techniques: liquid chromatography with tandem mass spectrometry (LC-MS/MS), matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Among all hepatic lipids identified by LC-MS/MS analysis, more than 350 were statistically impacted (increased or decreased levels) after PFOA exposure, as confirmed by multi-variate data analysis. The levels of many lipid species from different lipid classes, most notably phosphatidylethanolamine (PE), phosphatidylcholine (PC), and TG, were significantly altered. Subsequent lipidomic analysis highlights the pathways significantly impacted by PFOA exposure, with the glycerophospholipid metabolism being the most impacted, and the changes in the lipidome network, which connects all the lipid species together. MALDI-MSI displays the heterogeneous distribution of the affected lipids and PFOA, revealing different areas of lipid expression linked to PFOA localization. TOF-SIMS localizes PFOA at the cellular level, supporting MALDI-MSI results. This multi-modal MS analysis unveils the lipidomic impact of PFOA in the mouse liver after high-dose and short-term exposure and opens new opportunities in toxicology.


Asunto(s)
Lipidómica , Espectrometría de Masas en Tándem , Ratones , Animales , Cromatografía Liquida , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Caprilatos , Triglicéridos , Hígado
5.
Artículo en Inglés | MEDLINE | ID: mdl-35848892

RESUMEN

Alkali postdeposition treatments of Cu(In,Ga)Se2 absorbers with KF, RbF, and CsF have led to remarkable efficiency improvements for chalcopyrite thin film solar cells. However, the effect of such treatments on the electronic properties and defect physics of the chalcopyrite absorber surfaces are not yet fully understood. In this work, we use scanning tunneling spectroscopy and X-ray photoelectron spectroscopy to compare the surface defect electronic properties and chemical composition of RbF-treated and nontreated absorbers. We find that the RbF treatment is effective in passivating electronic defect levels at the surface by preventing surface oxidation. Our X-ray photoelectron spectroscopy (XPS) data points to the presence of chemisorbed Rb on the surface with a bonding configuration similar to that of a RbInSe2 bulk compound. Yet, a quantitative analysis indicates Rb coverage in the submonolayer regime, which is likely causing the surface passivation. Furthermore, ab initio calculations confirm that RbF-treated surfaces are less prone to oxidation (in the form of Ga, In, and Se oxides) than bare chalcopyrite surfaces. In addition, elemental diffusion of Rb along with Na, Cu, and Ga is found to occur when the samples are annealed under ultrahigh vacuum conditions. Magnetic sector secondary ion mass spectrometry measurements indicate that there is a homogeneous spatial distribution of Rb on the surface both before and after annealing, albeit with an increased concentration at the surface after heat treatment. Depth-resolved magnetic sector secondary ion mass spectrometry measurements show that Rb diffusion within the bulk occurs predominantly along grain boundaries. Scanning tunneling and XPS measurements after subsequent annealing steps demonstrate that the Rb accumulation at the surface leads to the formation of metallic Rb phases, involving a significant increase of electronic defect levels and/or surface dipole formation. These results strongly suggest a deterioration of the absorber-window interface because of increased recombination losses after the heat-induced diffusion of Rb toward the interface.

6.
Anal Chem ; 94(30): 10754-10763, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35862487

RESUMEN

The structural, morphological, and chemical characterization of samples is of utmost importance for a large number of scientific fields. Furthermore, this characterization very often needs to be performed in three dimensions and at length scales down to the nanometer. Therefore, there is a stringent necessity to develop appropriate instrumentational solutions to fulfill these needs. Here we report on the deployment of magnetic sector secondary ion mass spectrometry (SIMS) on a type of instrument widely used for such nanoscale investigations, namely, focused ion beam (FIB)-scanning electron microscopy (SEM) instruments. First, we present the layout of the FIB-SEM-SIMS instrument and address its performance by using specific test samples. The achieved performance can be summarized as follows: an overall secondary ion beam transmission above 40%, a mass resolving power (M/ΔM) of more than 400, a detectable mass range from 1 to 400 amu, a lateral resolution in two-dimensional (2D) chemical imaging mode of 15 nm, and a depth resolution of ∼4 nm at 3.0 keV of beam landing energy. Second, we show results (depth profiling, 2D imaging, three-dimensional imaging) obtained in a wide range of areas, such as battery research, photovoltaics, multilayered samples, and life science applications. We hereby highlight the system's versatile capability of conducting high-performance correlative studies in the fields of materials science and life sciences.


Asunto(s)
Imagenología Tridimensional , Espectrometría de Masa de Ion Secundario , Imagenología Tridimensional/métodos , Fenómenos Magnéticos , Microscopía Electrónica de Rastreo
7.
Nat Nanotechnol ; 17(6): 598-605, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35449409

RESUMEN

Despite the remarkable progress in power conversion efficiency of perovskite solar cells, going from individual small-size devices into large-area modules while preserving their commercial competitiveness compared with other thin-film solar cells remains a challenge. Major obstacles include reduction of both the resistive losses and intrinsic defects in the electron transport layers and the reliable fabrication of high-quality large-area perovskite films. Here we report a facile solvothermal method to synthesize single-crystalline TiO2 rhombohedral nanoparticles with exposed (001) facets. Owing to their low lattice mismatch and high affinity with the perovskite absorber, their high electron mobility and their lower density of defects, single-crystalline TiO2 nanoparticle-based small-size devices achieve an efficiency of 24.05% and a fill factor of 84.7%. The devices maintain about 90% of their initial performance after continuous operation for 1,400 h. We have fabricated large-area modules and obtained a certified efficiency of 22.72% with an active area of nearly 24 cm2, which represents the highest-efficiency modules with the lowest loss in efficiency when scaling up.

8.
ACS Appl Mater Interfaces ; 14(6): 8527-8536, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35108489

RESUMEN

Strontium titanate (STO) is a well-known oxide used in a wide variety of applications due to its excellent stability and optoelectronic properties. However, its integration in photoelectrocatalytic devices is limited by the lack of fast and scalable methods to produce robust films at a low temperature and atmospheric pressure. Herein, we report an atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) approach for the synthesis of STO crystalline films and their applications for photoelectrochemical solar energy conversion. The film crystallinity, which plays a determinant role in the photoelectrochemical performance, was linked to the selected strontium precursor and injection method. Through thermal stability studies of the precursors [Sr(dpm), Sr(ipo), Sr(acac), and Ti(ipo)] and analysis of the solution droplet size, it was demonstrated that the closer thermal decomposition behavior and superior miscibility of the Sr(dpm) and Ti(ipo) precursors led to more homogeneous and crystalline films with the highest photoelectrochemical performance (16.5 µA cm-2 at 1.23 V vs RHE under 100 mW cm-2), which can be further improved by a factor of 3.4 using thermal annealing at 500 °C. Evidence of the impact of a strontium precursor on the properties of STO films is provided through thermogravimetric analysis, X-ray diffraction, energy-dispersive system, UV-vis, X-ray photoelectron spectroscopy, HIM-SIMS, and photoelectrochemical analysis.

9.
Small Methods ; 5(7): e2100223, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34927995

RESUMEN

Nanoparticles occur in various environments as a consequence of man-made processes, which raises concerns about their impact on the environment and human health. To allow for proper risk assessment, a precise and statistically relevant analysis of particle characteristics (such as size, shape, and composition) is required that would greatly benefit from automated image analysis procedures. While deep learning shows impressive results in object detection tasks, its applicability is limited by the amount of representative, experimentally collected and manually annotated training data. Here, an elegant, flexible, and versatile method to bypass this costly and tedious data acquisition process is presented. It shows that using a rendering software allows to generate realistic, synthetic training data to train a state-of-the art deep neural network. Using this approach, a segmentation accuracy can be derived that is comparable to man-made annotations for toxicologically relevant metal-oxide nanoparticle ensembles which were chosen as examples. The presented study paves the way toward the use of deep learning for automated, high-throughput particle detection in a variety of imaging techniques such as in microscopies and spectroscopies, for a wide range of applications, including the detection of micro- and nanoplastic particles in water and tissue samples.


Asunto(s)
Aprendizaje Profundo , Nanopartículas , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación
10.
Nat Commun ; 12(1): 6394, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737288

RESUMEN

Organic halide salt passivation is considered to be an essential strategy to reduce defects in state-of-the-art perovskite solar cells (PSCs). This strategy, however, suffers from the inevitable formation of in-plane favored two-dimensional (2D) perovskite layers with impaired charge transport, especially under thermal conditions, impeding photovoltaic performance and device scale-up. To overcome this limitation, we studied the energy barrier of 2D perovskite formation from ortho-, meta- and para-isomers of (phenylene)di(ethylammonium) iodide (PDEAI2) that were designed for tailored defect passivation. Treatment with the most sterically hindered ortho-isomer not only prevents the formation of surficial 2D perovskite film, even at elevated temperatures, but also maximizes the passivation effect on both shallow- and deep-level defects. The ensuing PSCs achieve an efficiency of 23.9% with long-term operational stability (over 1000 h). Importantly, a record efficiency of 21.4% for the perovskite module with an active area of 26 cm2 was achieved.

11.
Rep Prog Phys ; 84(10)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34404033

RESUMEN

This paper is a review on the combination between Helium Ion Microscopy (HIM) and Secondary Ion Mass Spectrometry (SIMS), which is a recently developed technique that is of particular relevance in the context of the quest for high-resolution high-sensitivity nano-analytical solutions. We start by giving an overview on the HIM-SIMS concept and the underlying fundamental principles of both HIM and SIMS. We then present and discuss instrumental aspects of the HIM and SIMS techniques, highlighting the advantage of the integrated HIM-SIMS instrument. We give an overview on the performance characteristics of the HIM-SIMS technique, which is capable of producing elemental SIMS maps with lateral resolution below 20 nm, approaching the physical resolution limits, while maintaining a sub-nanometric resolution in the secondary electron microscopy mode. In addition, we showcase different strategies and methods allowing to take profit of both capabilities of the HIM-SIMS instrument (high-resolution imaging using secondary electrons and mass filtered secondary sons) in a correlative approach. Since its development HIM-SIMS has been successfully applied to a large variety of scientific and technological topics. Here, we will present and summarise recent applications of nanoscale imaging in materials research, life sciences and geology.


Asunto(s)
Helio , Espectrometría de Masa de Ion Secundario , Pruebas Diagnósticas de Rutina , Microscopía Electrónica
12.
Environ Sci Technol ; 55(13): 9384-9393, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34165287

RESUMEN

The development of high-resolution microscopy and spectroscopy techniques has allowed the analysis of microscopic 3D objects in fields like nanotechnology and life and soil sciences. Soils have the ability to incorporate and store large amounts of organic carbon. To study this organic matter (OM) sequestration, it is essential to analyze its association with soil minerals at the relevant microaggregate scale. This has been previously studied in 2D. However, 3D surface representations would allow a variable angle and magnification analysis, providing detailed insight on their architecture. Here we illustrate a 4D surface reconstruction workflow able to locate preferential sites for OM deposition with respect to microaggregate topography. We used Helium Ion Microscopy to acquire overlapping Secondary Electron (SE) images to reconstruct the soil topography in 3D. Then we used nanoscale Secondary Ion Mass Spectrometry imaging to chemically differentiate between the OM and mineral constituents forming the microaggregates. This image was projected onto the 3D SE model to create a 4D surface reconstruction. Our results show that organo-mineral associations mainly form at medium curvatures while flat and highly curved surfaces are avoided. This method presents an important step forward to survey the 3D physical structure and chemical composition of microscale biogeochemical systems correlatively.


Asunto(s)
Minerales , Suelo , Carbono , Análisis Espectral
13.
Sci Total Environ ; 754: 142324, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33254900

RESUMEN

Colloidal silver products are sold for a wide range of disinfectant and health applications. This has increased the potential for human exposure to silver nanoparticles (AgNPs) and ions (Ag+), for which oral ingestion is considered to be a major route of exposure. Our objective was to evaluate and compare the toxicity of two commercially available colloidal silver products on two human intestinal epithelial models under realistic exposure conditions. Mesosilver™ and AgC were characterized and a concentration range between 0.1 and 12 µg/mL chosen. Caco-2 cells vs. co-culture of Caco-2 and mucus-secreting HT29-MTX cells (90/10) were used. Repeated exposure was carried out to determine cell viability over 18 days of cell differentiation in 24-well plates. Selected concentrations (0.1, 1, and 3 µg/mL) were tested on cells cultured in E-plates and Transwells with the same repeated exposure regimen, to determine cell impedance, and cell viability and trans-epithelial electrical resistance (TEER), respectively. Silver uptake, intracellular localisation, and translocation were determined by CytoViva™, HIM-SIMS, and ICP-MS. Genotoxicity was determined on acutely-exposed proliferating Caco-2 cells by γH2AX immunofluorescence staining. Repeated exposure of a given concentration of AgC, which is composed solely of ionic silver, generally exerted more toxic effects on Caco-2 cells than Mesosilver™, which contains a mix of AgNPs and ionic silver. Due to its patchy structure, the presence of mucus in the Caco-2/HT29-MTX co-culture only slightly mitigated the deleterious effects on cell viability. Increased genotoxicity was observed for AgC on proliferating Caco-2 cells. Silver uptake, intracellular localisation, and translocation were similar. In conclusion, Mesosilver™ and AgC colloidal silver products show different levels of gut toxicity due to the forms of distinct silver (AgNPs and/or Ag+) contained within. This study highlights the applicability of high-resolution (chemical) imaging to detect and localize silver and provides insights into its uptake mechanisms, intracellular fate and cellular effects.


Asunto(s)
Nanopartículas del Metal , Plata , Células CACO-2 , Supervivencia Celular , Humanos , Nanopartículas del Metal/toxicidad , Plata/toxicidad
14.
Sci Rep ; 10(1): 1416, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31996739

RESUMEN

Off-stoichiometric copper chromium delafossites demonstrate the highest values of electric conductivity among the p-type transparent conducting oxides. Morphological and structural changes in Cu0.66Cr1.33O2 upon annealing processes are investigated. Chained copper vacancies were previously suggested as source of the high levels of doping in this material. High resolution Helium Ion Microscopy, Secondary Ion Mass Spectrometry and Transmission Electron Microscopy reveal a significant rearrangement of copper and chromium after the thermal treatments. Furthermore, Positron Annihilation Spectroscopy evidences the presence of vacancy defects within the delafossite layers which can be assigned to the Cu vacancy chains whose concentration decreases during the thermal process. These findings further confirm these chained vacancies as source of the p-type doping and suggest that the changes in electrical conductivities within the off-stoichiometric copper based delafossites are triggered by elemental rearrangements.

15.
Nanotechnology ; 31(13): 135604, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31825900

RESUMEN

ZnO nanobelts may grow with their polar axis perpendicular to growth direction. Heterostructured nanobelts therefore contain hetero-interfaces along the polar axis of ZnO where polarisation mismatch may induce electron confinement. These interfaces run along the length of the nanobelts. Such heterostructure nanobelts are grown by molecular beam epitaxy and TEM images confirm the core-shell structure. The effects of shell-growth temperature on nano-heterostructures is investigated using photoluminescence and secondary ion mass spectrometry in a focussed ion-beam microscope with Ne+ as the primary ion beam. We perform low temperature photoluminescence on ensembles of such heterostructures and single nanostructures. We show how single nanobelts have photoluminescence spectra rich in features and attribute these to band misalignment at ZnO/ZnMgO interfaces embedded within nano-heterostructures.

16.
Part Fibre Toxicol ; 16(1): 14, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940208

RESUMEN

BACKGROUND: The present study aimed to evaluate the potential differences in the biological effects of two types of spherical silver particles of 20 and 200 nm (Ag20 and Ag200), and of PVP-coated silver nanowires (AgNWs) with a diameter of 50 nm and length up to 50 µm, using a complex 3D model representative for the alveolar barrier cultured at air-liquid interface (ALI). The alveolar model was exposed to 0.05, 0.5 and 5 µg/cm2 of test compounds at ALI using a state-of-the-art exposure system (Vitrocell™Cloud System). Endpoints related to the oxidative stress induction, anti-oxidant defence mechanisms, pro-inflammatory responses and cellular death were selected to evaluate the biocompatibility of silver particles and nanowires (AgNMs) and to further ascribe particular biological effects to the different morphologic properties between the three types of AgNMs evaluated. RESULTS: Significant cytotoxic effect was observed for all three types of AgNMs at the highest tested doses. The increased mRNA levels of the pro-apoptotic gene CASP7 suggests that apoptosis may occur after exposure to AgNWs. All three types of AgNMs increased the mRNA level of the anti-oxidant enzyme HMOX-1 and of the metal-binding anti-oxidant metallothioneins (MTs), with AgNWs being the most potent inducer. Even though all types of AgNMs induced the nuclear translocation of NF-kB, only AgNWs increased the mRNA level of pro-inflammatory mediators. The pro-inflammatory response elicited by AgNWs was further confirmed by the increased secretion of the 10 evaluated interleukins. CONCLUSION: In the current study, we demonstrated that the direct exposure of a complex tetra-culture alveolar model to different types of AgNMs at ALI induces shape- and size-specific biological responses. From the three AgNMs tested, AgNWs were the most potent in inducing biological alterations. Starting from 50 ng/cm2, a dose representative for an acute exposure in a high exposure occupational setting, AgNWs induced prominent changes indicative for a pro-inflammatory response. Even though the acute responses towards a dose representative for a full-lifetime exposure were also evaluated, chronic exposure scenarios at low dose are still unquestionably needed to reveal the human health impact of AgNMs during realistic conditions.


Asunto(s)
Barrera Alveolocapilar/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Modelos Biológicos , Nanocables/toxicidad , Alveolos Pulmonares/efectos de los fármacos , Plata/toxicidad , Contaminantes Atmosféricos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Citocinas/genética , Relación Dosis-Respuesta a Droga , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Tamaño de la Partícula , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/metabolismo
17.
Annu Rev Anal Chem (Palo Alto Calif) ; 12(1): 523-543, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-30699036

RESUMEN

The helium ion microscope (HIM) has emerged as an instrument of choice for patterning, imaging and, more recently, analytics at the nanoscale. Here, we review secondary electron imaging on the HIM and the various methodologies and hardware components that have been developed to confer analytical capabilities to the HIM. Secondary electron-based imaging can be performed at resolutions down to 0.5 nm with high contrast, with high depth of field, and directly on insulating samples. Analytical methods include secondary electron hyperspectral imaging (SEHI), scanning transmission ion microscopy (STIM), backscattering spectrometry and, in particular, secondary ion mass spectrometry (SIMS). The SIMS system that was specifically designed for the HIM allows the detection of all elements, the differentiation between isotopes, and the detection of trace elements. It provides mass spectra, depth profiles, and 2D or 3D images with lateral resolutions down to 10 nm.

18.
Beilstein J Nanotechnol ; 9: 1951-1963, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30116687

RESUMEN

The mechanical, structural, electronic and magnetic properties of carbon nanotubes can be modified by electron or ion irradiation. In this work we used 25 keV He+ and Ne+ ion irradiation to study the influence of fluence and sample thickness on the irradiation-induced damage of multiwalled carbon nanotubes (MWCNTs). The irradiated areas have been characterised by correlative Raman spectroscopy and TEM imaging. In order to preclude the Raman contribution coming from the amorphous carbon support of typical TEM grids, a new methodology involving Raman inactive Au TEM grids was developed. The experimental results have been compared to SDTRIMSP simulations. Due to the small thickness of the MWCNTs, sputtering has been observed for the top and bottom side of the samples. Depending on thickness and ion species, the sputter yield is significantly higher for the bottom than the top side. For He+ and Ne+ irradiation, damage formation evolves differently, with a change in the trend of the ratio of D to G peak in the Raman spectra being observed for He+ but not for Ne+. This can be attributed to differences in stopping power and sputter behaviour.

19.
Front Microbiol ; 9: 849, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867792

RESUMEN

To investigate the nature and origins of growth rate diversity in bacteria, we grew Escherichia coli and Bacillus subtilis in liquid minimal media and, after different periods of 15N-labeling, analyzed and imaged isotope distributions in individual cells with Secondary Ion Mass Spectrometry. We find a striking inter- and intra-cellular diversity, even in steady state growth. This is consistent with the strand-dependent, hyperstructure-based hypothesis that a major function of the cell cycle is to generate coherent, growth rate diversity via the semi-conservative pattern of inheritance of strands of DNA and associated macromolecular assemblies. We also propose quantitative, general, measures of growth rate diversity for studies of cell physiology that include antibiotic resistance.

20.
Front Microbiol ; 9: 794, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29740421

RESUMEN

Titanium dioxide (TiO2) is commonly used as a food additive (E171 in the EU) for its whitening and opacifying properties. However, a risk of intestinal barrier disruption, including dysbiosis of the gut microbiota, is increasingly suspected because of the presence of a nano-sized fraction in this additive. We hypothesized that food-grade E171 and Aeroxyde P25 (identical to the NM-105 OECD reference nanomaterial in the European Union Joint Research Centre) interact with both commensal intestinal bacteria and transient food-borne bacteria under non-UV-irradiated conditions. Based on differences in their physicochemical properties, we expect a difference in their respective effects. To test these hypotheses, we chose a panel of eight Gram-positive/Gram-negative bacterial strains, isolated from different biotopes and belonging to the species Escherichia coli, Lactobacillus rhamnosus, Lactococcus lactis (subsp. lactis and cremoris), Streptococcus thermophilus, and Lactobacillus sakei. Bacterial cells were exposed to food-grade E171 vs. P25 in vitro and the interactions were explored with innovative (nano)imaging methods. The ability of bacteria to trap TiO2 was demonstrated using synchrotron UV fluorescence imaging with single cell resolution. Subsequent alterations in the growth profiles were shown, notably for the transient food-borne L. lactis and the commensal intestinal E. coli in contact with food-grade TiO2. However, for both species, the reduction in cell cultivability remained moderate, and the morphological and ultrastructural damages, observed with electron microscopy, were restricted to a small number of cells. E. coli exposed to food-grade TiO2 showed some internalization of TiO2 (7% of cells), observed with high-resolution nano-secondary ion mass spectrometry (Nano-SIMS) chemical imaging. Taken together, these data show that E171 may be trapped by commensal and transient food-borne bacteria within the gut. In return, it may induce some physiological alterations in the most sensitive species, with a putative impact on gut microbiota composition and functioning, especially after chronic exposure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...