Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 24(5): 746-756, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29422521

RESUMEN

Functional magnetic resonance imaging (fMRI) successfully disentangled neuronal pathophysiology of major depression (MD), but only a few fMRI studies have investigated correlates and predictors of remission. Moreover, most studies have used clinical outcome parameters from two time points, which do not optimally depict differential response times. Therefore, we aimed to detect neuronal correlates of response and remission in an antidepressant treatment study with 7 T fMRI, potentially harnessing advances in detection power and spatial specificity. Moreover, we modeled outcome parameters from multiple study visits during a 12-week antidepressant fMRI study in 26 acute (aMD) patients compared to 36 stable remitted (rMD) patients and 33 healthy control subjects (HC). During an electrical painful stimulation task, significantly higher baseline activity in aMD compared to HC and rMD in the medial thalamic nuclei of the pulvinar was detected (p = 0.004, FWE-corrected), which was reduced by treatment. Moreover, clinical response followed a sigmoid function with a plateau phase in the beginning, a rapid decline and a further plateau at treatment end. By modeling the dynamic speed of response with fMRI-data, perigenual anterior cingulate activity after treatment was significantly associated with antidepressant response (p < 0.001, FWE-corrected). Temporoparietal junction (TPJ) baseline activity significantly predicted non-remission after 2 antidepressant trials (p = 0.005, FWE-corrected). The results underline the importance of the medial thalamus, attention networks in MD and antidepressant treatment. Moreover, by using a sigmoid model, this study provides a novel method to analyze the dynamic nature of response and remission for future trials.


Asunto(s)
Depresión/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Pulvinar/diagnóstico por imagen , Adulto , Antidepresivos/uso terapéutico , Encéfalo/fisiopatología , Mapeo Encefálico/métodos , Depresión/tratamiento farmacológico , Depresión/fisiopatología , Trastorno Depresivo Mayor/tratamiento farmacológico , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Núcleo Talámico Mediodorsal/fisiopatología , Dolor/fisiopatología , Pulvinar/fisiopatología , Tálamo/fisiopatología , Adulto Joven
2.
Mol Psychiatry ; 24(5): 772, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-29520037

RESUMEN

The author list was presented as last name, first name. The names should have been listed as:Christoph Kraus, Manfred Klöbl, Martin Tik, Bastian Auer, Thomas Vanicek, Nicole Geissberger, Daniela M. Pfabigan, Andreas Hahn, Michael Woletz, Katharina Paul, Arkadiusz Komorowski, Siegfried Kasper, Christian Windischberger, Claus Lamm, Rupert Lanzenberger.

3.
Food Funct ; 9(3): 1532-1544, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29431797

RESUMEN

While the consumption of caffeine and cocoa has been associated with a variety of health benefits to humans, some authors have proposed that excessive caffeine intake may increase the frequency of epileptic seizures in humans and reduce the efficiency of antiepileptic drugs. Little is known, however, about the proconvulsant potential of the sustained, excessive intake of cocoa on hippocampal neural circuits. Using the mouse as an experimental model, we examined the effects of the chronic consumption of food enriched in cocoa-based dark chocolate on motor and mood-related behaviours as well as on the excitability properties of hippocampal neurons. Cocoa food enrichment did not affect body weights or mood-related behaviours but rather promoted general locomotion and improved motor coordination. However, ex vivo electrophysiological analysis revealed a significant enhancement in seizure-like population spike bursting at the neurogenic dentate gyrus, which was paralleled by a significant reduction in the levels of GABA-α1 receptors thus suggesting that an excessive dietary intake of cocoa-enriched food might alter some of the synaptic elements involved in epileptogenesis. These data invite further multidisciplinary research aiming to elucidate the potential deleterious effects of chocolate abuse on behaviour and brain hyperexcitability.


Asunto(s)
Cacao/efectos adversos , Chocolate/efectos adversos , Hipocampo/fisiopatología , Convulsiones/etiología , Animales , Cacao/metabolismo , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Convulsiones/metabolismo
4.
Neuroimage ; 168: 383-391, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28108394

RESUMEN

Functional neuroimaging of the human amygdala has been of great interest to uncover the neural underpinnings of emotions, mood, motivation, social cognition, and decision making, as well as their dysfunction in psychiatric disorders. Yet, several factors limit in vivo imaging of amygdalar function, most importantly its location deep within the temporal lobe adjacent to air-filled cavities that cause magnetic field inhomogeneities entailing signal dropouts. Additionally, the amygdala and the extended amygdalar region consist of several substructures, which have been assigned different functions and have important implications for functional and effective connectivity studies. Here we show that high-resolution ultra-high field fMRI at 7T can be used to overcome these fundamental challenges for acquisition and can meet some of the demands posed by the complex neuroanatomy and -physiology in this region. Utilizing the inherently high SNR, we use an optimized preprocessing and data analysis strategy to demonstrate that imaging of the (extended) amygdala is highly reliable and robust. Using unsmoothed single-subject data allowed us to differentiate brain activation during processing of emotional faces in the central and basolateral amygdala and, for the first time, in the bed nucleus of the stria terminalis (BNST), which is critically involved in the neural mechanisms of anxiety and threat monitoring. We also provide a quantitative assessment of single subject sensitivity, which is relevant for connectivity studies that rely on time course extraction of functionally-defined volumes of interest.


Asunto(s)
Amígdala del Cerebelo/diagnóstico por imagen , Emociones/fisiología , Expresión Facial , Reconocimiento Facial/fisiología , Neuroimagen Funcional/métodos , Imagen por Resonancia Magnética/métodos , Núcleos Septales/diagnóstico por imagen , Adulto , Femenino , Humanos , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...