Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
2.
Front Toxicol ; 6: 1390196, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903859

RESUMEN

Toxicants with the potential to bioaccumulate in humans and animals have long been a cause for concern, particularly due to their association with multiple diseases and organ injuries. Per- and polyfluoro alkyl substances (PFAS) and polycyclic aromatic hydrocarbons (PAH) are two such classes of chemicals that bioaccumulate and have been associated with steatosis in the liver. Although PFAS and PAH are classified as chemicals of concern, their molecular mechanisms of toxicity remain to be explored in detail. In this study, we aimed to identify potential mechanisms by which an acute exposure to PFAS and PAH chemicals can induce lipid accumulation and whether the responses depend on chemical class, dose, and sex. To this end, we analyzed mechanisms beginning with the binding of the chemical to a molecular initiating event (MIE) and the consequent transcriptomic alterations. We collated potential MIEs using predictions from our previously developed ToxProfiler tool and from published steatosis adverse outcome pathways. Most of the MIEs are transcription factors, and we collected their target genes by mining the TRRUST database. To analyze the effects of PFAS and PAH on the steatosis mechanisms, we performed a computational MIE-target gene analysis on high-throughput transcriptomic measurements of liver tissue from male and female rats exposed to either a PFAS or PAH. The results showed peroxisome proliferator-activated receptor (PPAR)-α targets to be the most dysregulated, with most of the genes being upregulated. Furthermore, PFAS exposure disrupted several lipid metabolism genes, including upregulation of fatty acid oxidation genes (Acadm, Acox1, Cpt2, Cyp4a1-3) and downregulation of lipid transport genes (Apoa1, Apoa5, Pltp). We also identified multiple genes with sex-specific behavior. Notably, the rate-limiting genes of gluconeogenesis (Pck1) and bile acid synthesis (Cyp7a1) were specifically downregulated in male rats compared to female rats, while the rate-limiting gene of lipid synthesis (Scd) showed a PFAS-specific upregulation. The results suggest that the PPAR signaling pathway plays a major role in PFAS-induced lipid accumulation in rats. Together, these results show that PFAS exposure induces a sex-specific multi-factorial mechanism involving rate-limiting genes of gluconeogenesis and bile acid synthesis that could lead to activation of an adverse outcome pathway for steatosis.

3.
Chem Res Toxicol ; 37(6): 923-934, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38842447

RESUMEN

Benchmark dose (BMD) modeling estimates the dose of a chemical that causes a perturbation from baseline. Transcriptional BMDs have been shown to be relatively consistent with apical end point BMDs, opening the door to using molecular BMDs to derive human health-based guidance values for chemical exposure. Metabolomics measures the responses of small-molecule endogenous metabolites to chemical exposure, complementing transcriptomics by characterizing downstream molecular phenotypes that are more closely associated with apical end points. The aim of this study was to apply BMD modeling to in vivo metabolomics data, to compare metabolic BMDs to both transcriptional and apical end point BMDs. This builds upon our previous application of transcriptomics and BMD modeling to a 5-day rat study of triphenyl phosphate (TPhP), applying metabolomics to the same archived tissues. Specifically, liver from rats exposed to five doses of TPhP was investigated using liquid chromatography-mass spectrometry and 1H nuclear magnetic resonance spectroscopy-based metabolomics. Following the application of BMDExpress2 software, 2903 endogenous metabolic features yielded viable dose-response models, confirming a perturbation to the liver metabolome. Metabolic BMD estimates were similarly sensitive to transcriptional BMDs, and more sensitive than both clinical chemistry and apical end point BMDs. Pathway analysis of the multiomics data sets revealed a major effect of TPhP exposure on cholesterol (and downstream) pathways, consistent with clinical chemistry measurements. Additionally, the transcriptomics data indicated that TPhP activated xenobiotic metabolism pathways, which was confirmed by using the underexploited capability of metabolomics to detect xenobiotic-related compounds. Eleven biotransformation products of TPhP were discovered, and their levels were highly correlated with multiple xenobiotic metabolism genes. This work provides a case study showing how metabolomics and transcriptomics can estimate mechanistically anchored points-of-departure. Furthermore, the study demonstrates how metabolomics can also discover biotransformation products, which could be of value within a regulatory setting, for example, as an enhancement of OECD Test Guideline 417 (toxicokinetics).


Asunto(s)
Biotransformación , Hígado , Metabolómica , Animales , Ratas , Hígado/metabolismo , Hígado/efectos de los fármacos , Masculino , Relación Dosis-Respuesta a Droga , Benchmarking , Organofosfatos/toxicidad , Organofosfatos/metabolismo , Ratas Sprague-Dawley
4.
Arch Toxicol ; 97(8): 2291-2302, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37296313

RESUMEN

In a joint effort involving scientists from academia, industry and regulatory agencies, ECETOC's activities in Omics have led to conceptual proposals for: (1) A framework that assures data quality for reporting and inclusion of Omics data in regulatory assessments; and (2) an approach to robustly quantify these data, prior to interpretation for regulatory use. In continuation of these activities this workshop explored and identified areas of need to facilitate robust interpretation of such data in the context of deriving points of departure (POD) for risk assessment and determining an adverse change from normal variation. ECETOC was amongst the first to systematically explore the application of Omics methods, now incorporated into the group of methods known as New Approach Methodologies (NAMs), to regulatory toxicology. This support has been in the form of both projects (primarily with CEFIC/LRI) and workshops. Outputs have led to projects included in the workplan of the Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST) group of the Organisation for Economic Co-operation and Development (OECD) and to the drafting of OECD Guidance Documents for Omics data reporting, with potentially more to follow on data transformation and interpretation. The current workshop was the last in a series of technical methods development workshops, with a sub-focus on the derivation of a POD from Omics data. Workshop presentations demonstrated that Omics data developed within robust frameworks for both scientific data generation and analysis can be used to derive a POD. The issue of noise in the data was discussed as an important consideration for identifying robust Omics changes and deriving a POD. Such variability or "noise" can comprise technical or biological variation within a dataset and should clearly be distinguished from homeostatic responses. Adverse outcome pathways (AOPs) were considered a useful framework on which to assemble Omics methods, and a number of case examples were presented in illustration of this point. What is apparent is that high dimension data will always be subject to varying processing pipelines and hence interpretation, depending on the context they are used in. Yet, they can provide valuable input for regulatory toxicology, with the pre-condition being robust methods for the collection and processing of data together with a comprehensive description how the data were interpreted, and conclusions reached.


Asunto(s)
Rutas de Resultados Adversos , Genómica , Genómica/métodos , Medición de Riesgo , Toxicogenética , Proyectos de Investigación
5.
Int J Radiat Biol ; 99(9): 1320-1331, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36881459

RESUMEN

BACKGROUND: Exposure to different forms of ionizing radiation occurs in diverse occupational, medical, and environmental settings. Improving the accuracy of the estimated health risks associated with exposure is therefore, essential for protecting the public, particularly as it relates to chronic low dose exposures. A key aspect to understanding health risks is precise and accurate modeling of the dose-response relationship. Toward this vision, benchmark dose (BMD) modeling may be a suitable approach for consideration in the radiation field. BMD modeling is already extensively used for chemical hazard assessments and is considered statistically preferable to identifying low and no observed adverse effects levels. BMD modeling involves fitting mathematical models to dose-response data for a relevant biological endpoint and identifying a point of departure (the BMD, or its lower bound). Recent examples in chemical toxicology show that when applied to molecular endpoints (e.g. genotoxic and transcriptional endpoints), BMDs correlate to points of departure for more apical endpoints such as phenotypic changes (e.g. adverse effects) of interest to regulatory decisions. This use of BMD modeling may be valuable to explore in the radiation field, specifically in combination with adverse outcome pathways, and may facilitate better interpretation of relevant in vivo and in vitro dose-response data. To advance this application, a workshop was organized on June 3rd, 2022, in Ottawa, Ontario that brought together BMD experts in chemical toxicology and the radiation scientific community of researchers, regulators, and policy-makers. The workshop's objective was to introduce radiation scientists to BMD modeling and its practical application using case examples from the chemical toxicity field and demonstrate the BMDExpress software using a radiation dataset. Discussions focused on the BMD approach, the importance of experimental design, regulatory applications, its use in supporting the development of adverse outcome pathways, and specific radiation-relevant examples. CONCLUSIONS: Although further deliberations are needed to advance the use of BMD modeling in the radiation field, these initial discussions and partnerships highlight some key steps to guide future undertakings related to new experimental work.


Asunto(s)
Benchmarking , Modelos Teóricos , Benchmarking/métodos , Daño del ADN , Medición de Riesgo/métodos , Relación Dosis-Respuesta a Droga
6.
Comput Toxicol ; 252023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36909352

RESUMEN

The need to analyze the complex relationships observed in high-throughput toxicogenomic and other omic platforms has resulted in an explosion of methodological advances in computational toxicology. However, advancements in the literature often outpace the development of software researchers can implement in their pipelines, and existing software is frequently based on pre-specified workflows built from well-vetted assumptions that may not be optimal for novel research questions. Accordingly, there is a need for a stable platform and open-source codebase attached to a programming language that allows users to program new algorithms. To fill this gap, the Biostatistics and Computational Biology Branch of the National Institute of Environmental Health Sciences, in cooperation with the National Toxicology Program (NTP) and US Environmental Protection Agency (EPA), developed ToxicR, an open-source R programming package. The ToxicR platform implements many of the standard analyses used by the NTP and EPA, including dose-response analyses for continuous and dichotomous data that employ Bayesian, maximum likelihood, and model averaging methods, as well as many standard tests the NTP uses in rodent toxicology and carcinogenicity studies, such as the poly-K and Jonckheere trend tests. ToxicR is built on the same codebase as current versions of the EPA's Benchmark Dose software and NTP's BMDExpress software but has increased flexibility because it directly accesses this software. To demonstrate ToxicR, we developed a custom workflow to illustrate its capabilities for analyzing toxicogenomic data. The unique features of ToxicR will allow researchers in other fields to add modules, increasing its functionality in the future.

7.
Toxicol Pathol ; 51(7-8): 470-481, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38288963

RESUMEN

Toxicogenomic technologies query the genome, transcriptome, proteome, and the epigenome in a variety of toxicological conditions. Due to practical considerations related to the dynamic range of the assays, sensitivity, cost, and technological limitations, transcriptomic approaches are predominantly used in toxicogenomics. Toxicogenomics is being used to understand the mechanisms of toxicity and carcinogenicity, evaluate the translational relevance of toxicological responses from in vivo and in vitro models, and identify predictive biomarkers of disease and exposure. In this session, a brief overview of various transcriptomic technologies and practical considerations related to experimental design was provided. The advantages of gene network analyses to define mechanisms were also discussed. An assessment of the utility of toxicogenomic technologies in the environmental and pharmaceutical space showed that these technologies are being increasingly used to gain mechanistic insights and determining the translational relevance of adverse findings. Within the environmental toxicology area, there is a broader regulatory consideration of benchmark doses derived from toxicogenomics data. In contrast, these approaches are mainly used for internal decision-making in pharmaceutical development. Finally, the development and application of toxicogenomic signatures for prediction of apical endpoints of regulatory concern continues to be area of intense research.


Asunto(s)
Hígado , Toxicogenética , Perfilación de la Expresión Génica , Proteómica , Transcriptoma
8.
Toxicol Sci ; 190(2): 127-132, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36165699

RESUMEN

Use of molecular data in human and ecological health risk assessments of industrial chemicals and agrochemicals has been anticipated by the scientific community for many years; however, these data are rarely used for risk assessment. Here, a logic framework is proposed to explore the feasibility and future development of transcriptomic methods to refine and replace the current apical endpoint-based regulatory toxicity testing paradigm. Four foundational principles are outlined and discussed that would need to be accepted by stakeholders prior to this transformative vision being realized. Well-supported by current knowledge, the first principle is that transcriptomics is a reliable tool for detecting alterations in gene expression that result from endogenous or exogenous influences on the test organism. The second principle states that alterations in gene expression are indicators of adverse or adaptive biological responses to stressors in an organism. Principle 3 is that transcriptomics can be employed to establish a benchmark dose-based point of departure (POD) from short-term, in vivo studies at a dose level below which a concerted molecular change (CMC) is not expected. Finally, Principle 4 states that the use of a transcriptomic POD (set at the CMC dose level) will support a human health-protective risk assessment. If all four principles are substantiated, this vision is expected to transform aspects of the industrial chemical and agrochemical risk assessment process that are focused on establishing safe exposure levels for mammals across numerous toxicological contexts resulting in a significant reduction in animal use while providing equal or greater protection of human health. Importantly, these principles and approaches are also generally applicable for ecological safety assessment.


Asunto(s)
Pruebas de Toxicidad , Transcriptoma , Animales , Humanos , Medición de Riesgo/métodos , Benchmarking , Mamíferos
9.
Comput Toxicol ; 212022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35083394

RESUMEN

Computational methods for genomic dose-response integrate dose-response modeling with bioinformatics tools to evaluate changes in molecular and cellular functions related to pathogenic processes. These methods use parametric models to describe each gene's dose-response, but such models may not adequately capture expression changes. Additionally, current approaches do not consider gene co-expression networks. When assessing co-expression networks, one typically does not consider the dose-response relationship, resulting in 'co-regulated' gene sets containing genes having different dose-response patterns. To avoid these limitations, we develop an analysis pipeline called Aggregated Local Extrema Splines for High-throughput Analysis (ALOHA), which computes individual genomic dose-response functions using a flexible class Bayesian shape constrained splines and clusters gene co-regulation based upon these fits. Using splines, we reduce information loss due to parametric lack-of-fit issues, and because we cluster on dose-response relationships, we better identify co-regulation clusters for genes that have co-expressed dose-response patterns from chemical exposure. The clustered pathways can then be used to estimate a dose associated with a pre-specified biological response, i.e., the benchmark dose (BMD), and approximate a point of departure dose corresponding to minimal adverse response in the whole tissue/organism. We compare our approach to current parametric methods and our biologically enriched gene sets to cluster on normalized expression data. Using this methodology, we can more effectively extract the underlying structure leading to more cohesive estimates of gene set potency.

10.
Toxicol Appl Pharmacol ; 433: 115773, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34688701

RESUMEN

Carcinogenicity of hexavalent chromium [Cr (VI)] has been supported by a number of epidemiological and animal studies; however, its carcinogenic mode of action is still incompletely understood. To identify mechanisms involved in cancer development, we analyzed gene expression data from duodena of mice exposed to Cr(VI) in drinking water. This analysis included (i) identification of upstream regulatory molecules that are likely responsible for the observed gene expression changes, (ii) identification of annotated gene expression data from public repositories that correlate with gene expression changes in duodena of Cr(VI)-exposed mice, and (iii) identification of hallmark and oncogenic signature gene sets relevant to these data. We identified the inactivated CFTR gene among the top scoring upstream regulators, and found positive correlations between the expression data from duodena of Cr(VI)-exposed mice and other datasets in public repositories associated with the inactivation of the CFTR gene. In addition, we found enrichment of signatures for oncogenic signaling, sustained cell proliferation, impaired apoptosis and tissue remodeling. Results of our computational study support the tumor-suppressor role of the CFTR gene. Furthermore, our results support human relevance of the Cr(VI)-mediated carcinogenesis observed in the small intestines of exposed mice and suggest possible groups that may be more vulnerable to the adverse outcomes associated with the inactivation of CFTR by hexavalent chromium or other agents. Lastly, our findings predict, for the first time, the role of CFTR inactivation in chemical carcinogenesis and expand the range of plausible mechanisms that may be operative in Cr(VI)-mediated carcinogenesis of intestinal and possibly other tissues.


Asunto(s)
Transformación Celular Neoplásica/inducido químicamente , Cromo/toxicidad , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Neoplasias Duodenales/inducido químicamente , Duodeno/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Proteínas Supresoras de Tumor/genética , Contaminantes Químicos del Agua/toxicidad , Administración Oral , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Cromo/administración & dosificación , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Bases de Datos Genéticas , Agua Potable , Neoplasias Duodenales/genética , Neoplasias Duodenales/metabolismo , Neoplasias Duodenales/patología , Duodeno/metabolismo , Duodeno/patología , Perfilación de la Expresión Génica , Ratones , Medición de Riesgo , Biología de Sistemas , Transcriptoma , Proteínas Supresoras de Tumor/metabolismo , Contaminantes Químicos del Agua/administración & dosificación
11.
Environ Health Perspect ; 129(9): 97008, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34516295

RESUMEN

BACKGROUND: Pesticide exposure is associated with many long-term health outcomes; the potential underlying mechanisms are not well established for most associations. Epigenetic modifications, such as DNA methylation, may contribute. Individual pesticides may be associated with specific DNA methylation patterns but no epigenome-wide association study (EWAS) has evaluated methylation in relation to individual pesticides. OBJECTIVES: We conducted an EWAS of DNA methylation in relation to several pesticide active ingredients. METHODS: The Agricultural Lung Health Study is a case-control study of asthma, nested within the Agricultural Health Study. We analyzed blood DNA methylation measured using Illumina's EPIC array in 1,170 male farmers of European ancestry. For pesticides still on the market at blood collection (2009-2013), we evaluated nine active ingredients for which at least 30 participants reported past and current (within the last 12 months) use, as well as seven banned organochlorines with at least 30 participants reporting past use. We used robust linear regression to compare methylation at individual C-phosphate-G sites (CpGs) among users of a specific pesticide to never users. RESULTS: Using family-wise error rate (p<9×10-8) or false-discovery rate (FDR<0.05), we identified 162 differentially methylated CpGs across 8 of 9 currently marketed active ingredients (acetochlor, atrazine, dicamba, glyphosate, malathion, metolachlor, mesotrione, and picloram) and one banned organochlorine (heptachlor). Differentially methylated CpGs were unique to each active ingredient, and a dose-response relationship with lifetime days of use was observed for most. Significant CpGs were enriched for transcription motifs and 28% of CpGs were associated with whole blood cis-gene expression, supporting functional effects of findings. We corroborated a previously reported association between dichlorodiphenyltrichloroethane (banned in the United States in 1972) and epigenetic age acceleration. DISCUSSION: We identified differential methylation for several active ingredients in male farmers of European ancestry. These may serve as biomarkers of chronic exposure and could inform mechanisms of long-term health outcomes from pesticide exposure. https://doi.org/10.1289/EHP8928.


Asunto(s)
Epigenoma , Plaguicidas , Estudios de Casos y Controles , Metilación de ADN , Humanos , Pulmón , Masculino , Plaguicidas/toxicidad
12.
Regul Toxicol Pharmacol ; 125: 105020, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34333066

RESUMEN

Omics methodologies are widely used in toxicological research to understand modes and mechanisms of toxicity. Increasingly, these methodologies are being applied to questions of regulatory interest such as molecular point-of-departure derivation and chemical grouping/read-across. Despite its value, widespread regulatory acceptance of omics data has not yet occurred. Barriers to the routine application of omics data in regulatory decision making have been: 1) lack of transparency for data processing methods used to convert raw data into an interpretable list of observations; and 2) lack of standardization in reporting to ensure that omics data, associated metadata and the methodologies used to generate results are available for review by stakeholders, including regulators. Thus, in 2017, the Organisation for Economic Co-operation and Development (OECD) Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST) launched a project to develop guidance for the reporting of omics data aimed at fostering further regulatory use. Here, we report on the ongoing development of the first formal reporting framework describing the processing and analysis of both transcriptomic and metabolomic data for regulatory toxicology. We introduce the modular structure, content, harmonization and strategy for trialling this reporting framework prior to its publication by the OECD.


Asunto(s)
Metabolómica/normas , Organización para la Cooperación y el Desarrollo Económico/normas , Toxicogenética/normas , Toxicología/normas , Transcriptoma/fisiología , Documentación/normas , Humanos
13.
Altern Lab Anim ; 49(3): 73-82, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34233495

RESUMEN

New Approach Methodologies (NAMs) that employ artificial intelligence (AI) for predicting adverse effects of chemicals have generated optimistic expectations as alternatives to animal testing. However, the major underappreciated challenge in developing robust and predictive AI models is the impact of the quality of the input data on the model accuracy. Indeed, poor data reproducibility and quality have been frequently cited as factors contributing to the crisis in biomedical research, as well as similar shortcomings in the fields of toxicology and chemistry. In this article, we review the most recent efforts to improve confidence in the robustness of toxicological data and investigate the impact that data curation has on the confidence in model predictions. We also present two case studies demonstrating the effect of data curation on the performance of AI models for predicting skin sensitisation and skin irritation. We show that, whereas models generated with uncurated data had a 7-24% higher correct classification rate (CCR), the perceived performance was, in fact, inflated owing to the high number of duplicates in the training set. We assert that data curation is a critical step in building computational models, to help ensure that reliable predictions of chemical toxicity are achieved through use of the models.


Asunto(s)
Alternativas a las Pruebas en Animales , Inteligencia Artificial , Animales , Simulación por Computador , Exactitud de los Datos , Reproducibilidad de los Resultados
14.
Comput Toxicol ; 182021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34013136

RESUMEN

Computational methods are needed to more efficiently leverage data from in vitro cell-based models to predict what occurs within whole body systems after chemical insults. This study set out to test the hypothesis that in vitro high-throughput screening (HTS) data can more effectively predict in vivo biological responses when chemical disposition and toxicokinetic (TK) modeling are employed. In vitro HTS data from the Tox21 consortium were analyzed in concert with chemical disposition modeling to derive nominal, aqueous, and intracellular estimates of concentrations eliciting 50% maximal activity. In vivo biological responses were captured using rat liver transcriptomic data from the DrugMatrix and TG-Gates databases and evaluated for pathway enrichment. In vivo dosing data were translated to equivalent body concentrations using HTTK modeling. Random forest models were then trained and tested to predict in vivo pathway-level activity across 221 chemicals using in vitro bioactivity data and physicochemical properties as predictor variables, incorporating methods to address imbalanced training data resulting from high instances of inactivity. Model performance was quantified using the area under the receiver operator characteristic curve (AUC-ROC) and compared across pathways for different combinations of predictor variables. All models that included toxicokinetics were found to outperform those that excluded toxicokinetics. Biological interpretation of the model features revealed that rather than a direct mapping of in vitro assays to in vivo pathways, unexpected combinations of multiple in vitro assays predicted in vivo pathway-level activities. To demonstrate the utility of these findings, the highest-performing model was leveraged to make new predictions of in vivo biological responses across all biological pathways for remaining chemicals tested in Tox21 with adequate data coverage (n = 6617). These results demonstrate that, when chemical disposition and toxicokinetics are carefully considered, in vitro HT screening data can be used to effectively predict in vivo biological responses to chemicals.

15.
Toxicol Sci ; 181(2): 175-186, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33749773

RESUMEN

Interpretation of untargeted metabolomics data from both in vivo and physiologically relevant in vitro model systems continues to be a significant challenge for toxicology research. Potency-based modeling of toxicological responses has served as a pillar of interpretive context and translation of testing data. In this study, we leverage the resolving power of concentration-response modeling through benchmark concentration (BMC) analysis to interpret untargeted metabolomics data from differentiated cultures of HepaRG cells exposed to a panel of reference compounds and integrate data in a potency-aligned framework with matched transcriptomic data. For this work, we characterized biological responses to classical human liver injury compounds and comparator compounds, known to not cause liver injury in humans, at 10 exposure concentrations in spent culture media by untargeted liquid chromatography-mass spectrometry analysis. The analyte features observed (with limited metabolites identified) were analyzed using BMC modeling to derive compound-induced points of departure. The results revealed liver injury compounds produced concentration-related increases in metabolomic response compared to those rarely associated with liver injury (ie, sucrose, potassium chloride). Moreover, the distributions of altered metabolomic features were largely comparable with those observed using high throughput transcriptomics, which were further extended to investigate the potential for in vitro observed biological responses to be observed in humans with exposures at therapeutic doses. These results demonstrate the utility of BMC modeling of untargeted metabolomics data as a sensitive and quantitative indicator of human liver injury potential.


Asunto(s)
Benchmarking , Transcriptoma , Humanos , Hígado , Espectrometría de Masas , Metabolómica
16.
Chem Res Toxicol ; 34(2): 634-640, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33356152

RESUMEN

Molecular structure-based predictive models provide a proven alternative to costly and inefficient animal testing. However, due to a lack of interpretability of predictive models built with abstract molecular descriptors they have earned the notoriety of being black boxes. Interpretable models require interpretable descriptors to provide chemistry-backed predictive reasoning and facilitate intelligent molecular design. We developed a novel set of extensible chemistry-aware substructures, Saagar, to support interpretable predictive models and read-across protocols. Performance of Saagar in chemical characterization and search for structurally similar actives for read-across applications was compared with four publicly available fingerprint sets (MACCS (166), PubChem (881), ECFP4 (1024), ToxPrint (729)) in three benchmark sets (MUV, ULS, and Tox21) spanning ∼145 000 compounds and 78 molecular targets at 1%, 2%, 5%, and 10% false discovery rates. In 18 of the 20 comparisons, interpretable Saagar features performed better than the publicly available, but less interpretable and fixed-bit length, fingerprints. Examples are provided to show the enhanced capability of Saagar in extracting compounds with higher scaffold similarity. Saagar features are interpretable and efficiently characterize diverse chemical collections, thus making them a better choice for building interpretable predictive in silico models and read-across protocols.


Asunto(s)
Antraquinonas/química , Relación Estructura-Actividad Cuantitativa , Animales , Bases de Datos Factuales , Modelos Moleculares , Estructura Molecular
17.
Chem Res Toxicol ; 34(2): 268-285, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33063992

RESUMEN

Polycyclic aromatic compounds (PACs) are compounds with a minimum of two six-atom aromatic fused rings. PACs arise from incomplete combustion or thermal decomposition of organic matter and are ubiquitous in the environment. Within PACs, carcinogenicity is generally regarded to be the most important public health concern. However, toxicity in other systems (reproductive and developmental toxicity, immunotoxicity) has also been reported. Despite the large number of PACs identified in the environment, research attention to understand exposure and health effects of PACs has focused on a relatively limited subset, namely polycyclic aromatic hydrocarbons (PAHs), the PACs with only carbon and hydrogen atoms. To triage the rest of the vast number of PACs for more resource-intensive testing, we developed a data-driven approach to contextualize hazard characterization of PACs, by leveraging the available data from various data streams (in silico toxicity, in vitro activity, structural fingerprints, and in vivo data availability). The PACs were clustered on the basis of their in silico toxicity profiles containing predictions from 8 different categories (carcinogenicity, cardiotoxicity, developmental toxicity, genotoxicity, hepatotoxicity, neurotoxicity, reproductive toxicity, and urinary toxicity). We found that PACs with the same parent structure (e.g., fluorene) could have diverse in silico toxicity profiles. In contrast, PACs with similar substituted groups (e.g., alkylated-PAHs) or heterocyclics (e.g., N-PACs) with varying ring sizes could have similar in silico toxicity profiles, suggesting that these groups are better candidates for toxicity read-across analysis. The clusters/regions associated with certain in silico toxicity, in vitro activity, and structural fingerprints were identified. We found that genotoxicity/carcinogenicity (in silico toxicity) and xenobiotic homeostasis and stress response (in vitro activity), respectively, dominate the toxicity/activity variation seen in the PACs. The "hot spots" with enriched toxicity/activity in conjunction with availability of in vivo carcinogenicity data revealed regions of either data-poor (hydroxylated-PAHs) or data-rich (unsubstituted, parent PAHs) PACs. These regions offer potential targets for prioritization of further in vivo assessment and for chemical read-across efforts. The analysis results are searchable through an interactive web application (https://ntp.niehs.nih.gov/go/pacs_tableau), allowing for alternative hypothesis generation.


Asunto(s)
Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos/toxicidad , Pruebas de Toxicidad , Análisis de Componente Principal
18.
Front Genet ; 11: 594, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655620

RESUMEN

Analysis of bulk RNA sequencing (RNA-Seq) data is a valuable tool to understand transcription at the genome scale. Targeted sequencing of RNA has emerged as a practical means of assessing the majority of the transcriptomic space with less reliance on large resources for consumables and bioinformatics. TempO-Seq is a templated, multiplexed RNA-Seq platform that interrogates a panel of sentinel genes representative of genome-wide transcription. Nuances of the technology require proper preprocessing of the data. Various methods have been proposed and compared for normalizing bulk RNA-Seq data, but there has been little to no investigation of how the methods perform on TempO-Seq data. We simulated count data into two groups (treated vs. untreated) at seven-fold change (FC) levels (including no change) using control samples from human HepaRG cells run on TempO-Seq and normalized the data using seven normalization methods. Upper Quartile (UQ) performed the best with regard to maintaining FC levels as detected by a limma contrast between treated vs. untreated groups. For all FC levels, specificity of the UQ normalization was greater than 0.84 and sensitivity greater than 0.90 except for the no change and +1.5 levels. Furthermore, K-means clustering of the simulated genes normalized by UQ agreed the most with the FC assignments [adjusted Rand index (ARI) = 0.67]. Despite having an assumption of the majority of genes being unchanged, the DESeq2 scaling factors normalization method performed reasonably well as did simple normalization procedures counts per million (CPM) and total counts (TCs). These results suggest that for two class comparisons of TempO-Seq data, UQ, CPM, TC, or DESeq2 normalization should provide reasonably reliable results at absolute FC levels ≥2.0. These findings will help guide researchers to normalize TempO-Seq gene expression data for more reliable results.

19.
Nucleic Acids Res ; 48(W1): W472-W476, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32491175

RESUMEN

To support rapid chemical toxicity assessment and mechanistic hypothesis generation, here we present an intuitive webtool allowing a user to identify target organs in the human body where a substance is estimated to be more likely to produce effects. This tool, called Tox21BodyMap, incorporates results of 9,270 chemicals tested in the United States federal Tox21 research consortium in 971 high-throughput screening (HTS) assays whose targets were mapped onto human organs using organ-specific gene expression data. Via Tox21BodyMap's interactive tools, users can visualize chemical target specificity by organ system, and implement different filtering criteria by changing gene expression thresholds and activity concentration parameters. Dynamic network representations, data tables, and plots with comprehensive activity summaries across all Tox21 HTS assay targets provide an overall picture of chemical bioactivity. Tox21BodyMap webserver is available at https://sandbox.ntp.niehs.nih.gov/bodymap/.


Asunto(s)
Programas Informáticos , Pruebas de Toxicidad/métodos , Expresión Génica/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Internet , Especificidad de Órganos
20.
Toxicol Sci ; 176(2): 343-354, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492150

RESUMEN

A 5-day in vivo rat model was evaluated as an approach to estimate chemical exposures that may pose minimal risk by comparing benchmark dose (BMD) values for transcriptional changes in the liver and kidney to BMD values for toxicological endpoints from traditional toxicity studies. Eighteen chemicals, most having been tested by the National Toxicology Program in 2-year bioassays, were evaluated. Some of these chemicals are potent hepatotoxicants (eg, DE71, PFOA, and furan) in rodents, some exhibit toxicity but have minimal hepatic effects (eg, acrylamide and α,ß-thujone), and some exhibit little overt toxicity (eg, ginseng and milk thistle extract) based on traditional toxicological evaluations. Male Sprague Dawley rats were exposed once daily for 5 consecutive days by oral gavage to 8-10 dose levels for each chemical. Liver and kidney were collected 24 h after the final exposure and total RNA was assayed using high-throughput transcriptomics (HTT) with the rat S1500+ platform. HTT data were analyzed using BMD Express 2 to determine transcriptional gene set BMD values. BMDS was used to determine BMD values for histopathological effects from chronic or subchronic toxicity studies. For many of the chemicals, the lowest transcriptional BMDs from the 5-day assays were within a factor of 5 of the lowest histopathological BMDs from the toxicity studies. These data suggest that using HTT in a 5-day in vivo rat model provides reasonable estimates of BMD values for traditional apical endpoints. This approach may be useful to prioritize chemicals for further testing while providing actionable data in a timely and cost-effective manner.


Asunto(s)
Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Pruebas de Toxicidad/normas , Transcriptoma , Animales , Ensayos Analíticos de Alto Rendimiento , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...