RESUMEN
New results are presented on a high-statistics measurement of Collins and Sivers asymmetries of charged hadrons produced in deep inelastic scattering of muons on a transversely polarized ^{6}LiD target. The data were taken in 2022 with the COMPASS spectrometer using the 160 GeV muon beam at CERN, statistically balancing the existing data on transversely polarized proton targets. The first results from about two-thirds of the new data have total uncertainties smaller by up to a factor of three compared to the previous deuteron measurements. Using all the COMPASS proton and deuteron results, both the transversity and the Sivers distribution functions of the u and d quark, as well as the tensor charge in the measured x range are extracted. In particular, the accuracy of the d quark results is significantly improved.
RESUMEN
The COMPASS Collaboration performed measurements of the Drell-Yan process in 2015 and 2018 using a 190 GeV/c π^{-} beam impinging on a transversely polarized ammonia target. Combining the data of both years, we present final results on the amplitudes of five azimuthal modulations, which correspond to transverse-spin-dependent azimuthal asymmetries (TSAs) in the dimuon production cross section. Three of them probe the nucleon leading-twist Sivers, transversity, and pretzelosity transverse-momentum dependent (TMD) parton distribution functions (PDFs). The other two are induced by subleading effects. These TSAs provide unique new inputs for the study of the nucleon TMD PDFs and their universality properties. In particular, the Sivers TSA observed in this measurement is consistent with the fundamental QCD prediction of a sign change of naive time-reversal-odd TMD PDFs when comparing the Drell-Yan process with deep inelastic scattering. Also, within the context of model predictions, the observed transversity TSA is consistent with the expectation of a sign change for the Boer-Mulders function.
RESUMEN
The COMPASS Collaboration experiment recently discovered a new isovector resonancelike signal with axial-vector quantum numbers, the a_{1}(1420), decaying to f_{0}(980)π. With a mass too close to and a width smaller than the axial-vector ground state a_{1}(1260), it was immediately interpreted as a new light exotic meson, similar to the X, Y, Z states in the hidden-charm sector. We show that a resonancelike signal fully matching the experimental data is produced by the decay of the a_{1}(1260) resonance into K^{*}(âKπ)K[over ¯] and subsequent rescattering through a triangle singularity into the coupled f_{0}(980)π channel. The amplitude for this process is calculated using a new approach based on dispersion relations. The triangle-singularity model is fitted to the partial-wave data of the COMPASS experiment. Despite having fewer parameters, this fit shows a slightly better quality than the one using a resonance hypothesis and thus eliminates the need for an additional resonance in order to describe the data. We thereby demonstrate for the first time in the light-meson sector that a resonancelike structure in the experimental data can be described by rescattering through a triangle singularity, providing evidence for a genuine three-body effect.
RESUMEN
We describe an analysis comparing the pp[over ¯] elastic cross section as measured by the D0 Collaboration at a center-of-mass energy of 1.96 TeV to that in pp collisions as measured by the TOTEM Collaboration at 2.76, 7, 8, and 13 TeV using a model-independent approach. The TOTEM cross sections, extrapolated to a center-of-mass energy of sqrt[s]=1.96 TeV, are compared with the D0 measurement in the region of the diffractive minimum and the second maximum of the pp cross section. The two data sets disagree at the 3.4σ level and thus provide evidence for the t-channel exchange of a colorless, C-odd gluonic compound, also known as the odderon. We combine these results with a TOTEM analysis of the same C-odd exchange based on the total cross section and the ratio of the real to imaginary parts of the forward elastic strong interaction scattering amplitude in pp scattering for which the significance is between 3.4σ and 4.6σ. The combined significance is larger than 5σ and is interpreted as the first observation of the exchange of a colorless, C-odd gluonic compound.
RESUMEN
We present a measurement of the effective weak mixing angle parameter sin^{2}θ_{eff}^{â} in pp[over ¯]âZ/γ^{*}âµ^{+}µ^{-} events at a center-of-mass energy of 1.96 TeV, collected by the D0 detector at the Fermilab Tevatron Collider and corresponding to 8.6 fb^{-1} of integrated luminosity. The measured value of sin^{2}θ_{eff}^{â}[µµ]=0.23016±0.00064 is further combined with the result from the D0 measurement in pp[over ¯]âZ/γ^{*}âe^{+}e^{-} events, resulting in sin^{2}θ_{eff}^{â}[comb]=0.23095±0.00040. This combined result is the most precise measurement from a single experiment at a hadron collider and is the most precise determination using the coupling of the Z/γ^{*} to light quarks.
RESUMEN
The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of sqrt[s]=1.96 TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is A_{FB}^{tt[over ¯]}=0.128±0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions.
RESUMEN
The first measurement of transverse-spin-dependent azimuthal asymmetries in the pion-induced Drell-Yan (DY) process is reported. We use the CERN SPS 190 GeV/c π^{-} beam and a transversely polarized ammonia target. Three azimuthal asymmetries giving access to different transverse-momentum-dependent (TMD) parton distribution functions (PDFs) are extracted using dimuon events with invariant mass between 4.3 GeV/c^{2} and 8.5 GeV/c^{2}. Within the experimental uncertainties, the observed sign of the Sivers asymmetry is found to be consistent with the fundamental prediction of quantum chromodynamics (QCD) that the Sivers TMD PDFs extracted from DY have a sign opposite to the one extracted from semi-inclusive deep-inelastic scattering (SIDIS) data. We present two other asymmetries originating from the pion Boer-Mulders TMD PDFs convoluted with either the nucleon transversity or pretzelosity TMD PDFs. A recent COMPASS SIDIS measurement was obtained at a hard scale comparable to that of these DY results. This opens the way for possible tests of fundamental QCD universality predictions.
RESUMEN
Results are reported from an improved measurement of ν_{µ}âν_{e} transitions by the NOvA experiment. Using an exposure equivalent to 6.05×10^{20} protons on target, 33 ν_{e} candidates are observed with a background of 8.2±0.8 (syst.). Combined with the latest NOvA ν_{µ} disappearance data and external constraints from reactor experiments on sin^{2}2θ_{13}, the hypothesis of inverted mass hierarchy with θ_{23} in the lower octant is disfavored at greater than 93% C.L. for all values of δ_{CP}.
RESUMEN
This Letter reports new results on muon neutrino disappearance from NOvA, using a 14 kton detector equivalent exposure of 6.05×10^{20} protons on target from the NuMI beam at the Fermi National Accelerator Laboratory. The measurement probes the muon-tau symmetry hypothesis that requires maximal θ_{23} mixing (θ_{23}=π/4). Assuming the normal mass hierarchy, we find Δm_{32}^{2}=(2.67±0.11)×10^{-3} eV^{2} and sin^{2}θ_{23} at the two statistically degenerate values 0.404_{-0.022}^{+0.030} and 0.624_{-0.030}^{+0.022}, both at the 68% confidence level. Our data disfavor the maximal mixing scenario with 2.6σ significance.
RESUMEN
We report evidence for a narrow structure, X(5568), in the decay sequence X(5568)âB_{s}^{0}π^{±}, B_{s}^{0}âJ/ψÏ, J/ψâµ^{+}µ^{-}, ÏâK^{+}K^{-}. This is evidence for the first instance of a hadronic state with valence quarks of four different flavors. The mass and natural width of this state are measured to be m=5567.8±2.9(stat)_{-1.9}^{+0.9}(syst) MeV/c^{2} and Γ=21.9±6.4(stat)_{-2.5}^{+5.0}(syst) MeV/c^{2}. If the decay is X(5568)âB_{s}^{*}π^{±}âB_{s}^{0}γπ^{±} with an unseen γ, m(X(5568)) will be shifted up by m(B_{s}^{*})-m(B_{s}^{0})â¼49 MeV/c^{2}. This measurement is based on 10.4 fb^{-1} of pp[over ¯] collision data at sqrt[s]=1.96 TeV collected by the D0 experiment at the Fermilab Tevatron collider.
RESUMEN
We report evidence for the simultaneous production of J/ψ and Ï mesons in 8.1 fb^{-1} of data collected at sqrt[s]=1.96 TeV by the D0 experiment at the Fermilab pp[over ¯] Tevatron Collider. Events with these characteristics are expected to be produced predominantly by gluon-gluon interactions. In this analysis, we extract the effective cross section characterizing the initial parton spatial distribution, σ_{eff}=2.2±0.7(stat)±0.9(syst) mb.
RESUMEN
We present a study of the inclusive production of the X(4140) state with the decay to the J/ψÏ final state in hadronic collisions. Based on 10.4 fb^{-1} of pp[over ¯] collision data collected by the D0 experiment at the Fermilab Tevatron collider, we report the first evidence for the prompt production of an X(4140) state and find the fraction of X(4140) events originating from b hadrons to be f_{b}=0.39±0.07(stat)±0.10(syst). The ratio of the nonprompt X(4140) production rate to the B_{s}^{0} yield in the same channel is R=0.19±0.05(stat)±0.07(syst). The values of the mass M=4152.5±1.7(stat)_{-5.4}^{+6.2}(syst) MeV and width Γ=16.3±5.6(stat)±11.4(syst) MeV are consistent with previous measurements.
RESUMEN
We present the final combination of CDF and D0 measurements of cross sections for single-top-quark production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7 fb^{-1} per experiment. The t-channel cross section is measured to be σ_{t}=2.25_{-0.31}^{+0.29} pb. We also present the combinations of the two-dimensional measurements of the s- vs t-channel cross section. In addition, we give the combination of the s+t channel cross section measurement resulting in σ_{s+t}=3.30_{-0.40}^{+0.52} pb, without assuming the standard model value for the ratio σ_{s}/σ_{t}. The resulting value of the magnitude of the top-to-bottom quark coupling is |V_{tb}|=1.02_{-0.05}^{+0.06}, corresponding to |V_{tb}|>0.92 at the 95% C.L.
RESUMEN
We present the first search for CPT-violating effects in the mixing of Bs(0) mesons using the full Run II data set with an integrated luminosity of 10.4 fb(-1) of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. We measure the CPT-violating asymmetry in the decay Bs(0)âµ(±)Ds(±) as a function of celestial direction and sidereal phase. We find no evidence for CPT-violating effects and place limits on the direction and magnitude of flavor-dependent CPT- and Lorentz-invariance violating coupling coefficients. We find 95% confidence intervals of Δaâ¥<1.2×10(-12) GeV and (-0.8<ΔaT-0.396ΔaZ<3.9)×10(-13) GeV.
RESUMEN
We present a measurement of the fundamental parameter of the standard model, the weak mixing angle sin^{2}θ_{eff}^{â} which determines the relative strength of weak and electromagnetic interactions, in pp[over ¯]âZ/γ^{*}âe^{+}e^{-} events at a center of mass energy of 1.96 TeV, using data corresponding to 9.7 fb^{-1} of integrated luminosity collected by the D0 detector at the Fermilab Tevatron. The effective weak mixing angle is extracted from the forward-backward charge asymmetry as a function of the invariant mass around the Z boson pole. The measured value of sin^{2}θ_{eff}^{â}=0.23147±0.00047 is the most precise measurement from light quark interactions to date, with a precision close to the best LEP and SLD results.
RESUMEN
Combined constraints from the CDF and D0 Collaborations on models of the Higgs boson with exotic spin J and parity P are presented and compared with results obtained assuming the standard model value JP=0+. Both collaborations analyzed approximately 10 fb(-) of proton-antiproton collisions with a center-of-mass energy of 1.96 TeV collected at the Fermilab Tevatron. Two models predicting exotic Higgs bosons with JP=0- and JP=2+ are tested. The kinematic properties of exotic Higgs boson production in association with a vector boson differ from those predicted for the standard model Higgs boson. Upper limits at the 95% credibility level on the production rates of the exotic Higgs bosons, expressed as fractions of the standard model Higgs boson production rate, are set at 0.36 for both the JP=0- hypothesis and the JP=2+ hypothesis. If the production rate times the branching ratio to a bottom-antibottom pair is the same as that predicted for the standard model Higgs boson, then the exotic bosons are excluded with significances of 5.0 standard deviations and 4.9 standard deviations for the JP=0- and JP=2+ hypotheses, respectively.
RESUMEN
We present a measurement of the forward-backward asymmetry in the production of B(±) mesons, A(FB)(B(±)), using B(±)âJ/ψK(±) decays in 10.4 fb(-1) of ppÌ collisions at sqrt[s]=1.96 TeV collected by the D0 experiment during Run II of the Tevatron collider. A nonzero asymmetry would indicate a preference for a particular flavor, i.e., b quark or Ìb antiquark, to be produced in the direction of the proton beam. We extract A(FB)(B(±)) from a maximum likelihood fit to the difference between the numbers of forward- and backward-produced B(±) mesons. We measure an asymmetry consistent with zero: A(FB)(B(±))=[-0.24±0.41 (stat)±0.19 (syst)]%.
RESUMEN
We present an updated measurement of the B(s)(0) lifetime using the semileptonic decays B(s)(0)âD(s)(-)µ(+)νX, with D(s)(-)âÏπ(-) and ÏâK(+)K(-) (and the charge conjugate process). This measurement uses the full Tevatron Run II sample of proton-antiproton collisions at â[s]=1.96 TeV, comprising an integrated luminosity of 10.4 fb(-1). We find a flavor-specific lifetime τ(fs)(B(s)(0))=1.479±0.010(stat)±0.021(syst) ps. This technique is also used to determine the B(0) lifetime using the analogous B(0)âD(-)µ(+)νX decay with D(-)âÏπ(-) and ÏâK(+)K(-), yielding τ(B(0))=1.534±0.019(stat)±0.021(syst) ps. Both measurements are consistent with the current world averages, and the B(s)(0) lifetime measurement is one of the most precise to date. Taking advantage of the cancellation of systematic uncertainties, we determine the lifetime ratio τ(fs)(B(s)(0))/τ(B(0))=0.964±0.013(stat)±0.007(syst).
RESUMEN
We present constraints on models containing non-standard-model values for the spin J and parity P of the Higgs boson H in up to 9.7 fb(-1) of pp collisions at sqrt[s] = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. These are the first studies of Higgs boson J(P) with fermions in the final state. In the ZH â ââbb, WH â âνbb, and ZH â ννbb final states, we compare the standard model (SM) Higgs boson prediction, J(P) = 0(+), with two alternative hypotheses, J(P) = 0(-) and J(P) = 2(+). We use a likelihood ratio to quantify the degree to which our data are incompatible with non-SM J(P) predictions for a range of possible production rates. Assuming that the production rate in the signal models considered is equal to the SM prediction, we reject the J(P) = 0(-) and J(P) = 2(+) hypotheses at the 97.6% CL and at the 99.0% CL, respectively. The expected exclusion sensitivity for a J(P) = 0(-) (J(P) = 2(+)) state is at the 99.86% (99.94%) CL. Under the hypothesis that our data are the result of a combination of the SM-like Higgs boson and either a J(P) = 0(-) or a J(P) = 2(+) signal, we exclude a J(P) = 0(-) fraction above 0.80 and a J(P) = 2(+) fraction above 0.67 at the 95% CL. The expected exclusion covers J(P) = 0(-) (J(P) = 2(+)) fractions above 0.54 (0.47).
RESUMEN
We measure the mass of the top quark in lepton+jets final states using the full sample of pp collision data collected by the D0 experiment in Run II of the Fermilab Tevatron Collider at sqrt[s] = 1.96 TeV, corresponding to 9.7 fb(-1) of integrated luminosity. We use a matrix element technique that calculates the probabilities for each event to result from tt production or background. The overall jet energy scale is constrained in situ by the mass of the W boson. We measure m(t) = 174.98 ± 0.76 GeV. This constitutes the most precise single measurement of the top-quark mass.